Anomalies in quantum mechanics: The 1  /r? potential
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An anomaly is said to occur when a symmetry that is valid classically becomes broken as a result
of quantization. Although most manifestations of this phenomenon are in the context of quantum
field theory, there are at least two cases in quantum mechanics—the two-dimensional delta function
interaction and the 1 potential. The former has been treated in this journal; in this article we
discuss the physics of the latter together with experimental consequencego02 @merican
Association of Physics Teachers.
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[. INTRODUCTION first studied by Jacobihe rapid rotation of a gravitationally
) bound sphere leads to a lowest energy state not possessing
The use of symmetry to enhance our understanding ofhe expected axial invarianée.
physical systems is well known. An important manifestation (i) Anomalous (or quantum mechanical symmetry
of this Simplification is Nther’'s theorem,_WhiCh guarantees_breaking, wherein the Symmetry is present at the classical
the clorrespondence between symmetries and conservati@sel, but is broken by quantizatiéhExamples include el-
laws: Examples of the consequences of this theorem mcIudgmemary particle physics, where the two photon decay of the
neutral pieogn verifies the anomalous breaking of axialZU
. Lo . . invariance; and in elementary particle physics, where the
(b) t|me.transl_at|on_ Invariance- energy conservation, so-called trace anomaly Ieadg tg a subsﬁaxtial component of
© r_otatlonal invariance- angular momentum conserva- the nucleon mass being due to its gluon substructure.
tion. Although these manifestations of explicit and spontaneous

: . . symmetry breaking are textbook examples and are well
These particular symmetries and conservation laws are ex:

act. Far more common are cases for which the invariance i """ and available to most physicists, the realization of
X ) . ; . Znomalous symmetry breaking is generally presented only
only approximate and is broken in some fashion. Neverthe i “the  context of quantum field theory and is subse-
!cﬁzsé tgfersnyrgw deg)i/ssitrqu rgﬁ;ﬁ?gfﬂ%gfg&ﬂ(ﬂ%ﬁ%::ﬁ%zi;n uently somewhat inaccessible to all but the experts. Yet this
Y " P . anism accessibility need not be the case. Indeed in previous con-
by which this symmetry breaking can take place. Despite th?ri

many physical situations involving symmetry violation, there butions to this journal, it has been shown that the anomaly
Any pny ) g Symmetry viot ' is manifested in ordinary quantum mechanics in two spatial
exist just three mechanisms by which this violation can tak

&imensions with a delta function interactihHowever, this
place

(i) Explicit symmetry breaking, wherein the breaking oc- example is not realized in nature. In this note we point out
plicit Sy y Ing, . ng that an additional example of anomalous symmetry breaking
curs explicitly in the Lagrangian. Familiar examples include

particle physics, where the heavier mass of the strange quaﬂ?curs in the re?al Worlq of three spatial dlmen3|on§ n the
compared to its up, down counterparts violates the underlypresence ofal p_otent|al and t_h_at the result_ant predmuons
ing SU3) invariance? nuclear physics, where the up—down hf'ive been_experlmentally ver|f|e_d in atomic physics. The
quark mass difference together with electromagnetic eﬁectglscusspn Is at the level appropriate for a graduate quantum
are responsible for small deviations from isotopic spinmeCh"’mICS course.. . .

invariance® gravitational physics, where general relativity _After_a brief rewew_of the pr_ewously mer_moned two-
together with small perturbations from the outer planets leadimensional delta function potential, we show in Sec. Il how

2 . . . .
to deviations from the underlying(@) invariance associated '€ 1f interaction can be analyzed using either cutoff regu-
with a pure I/ interaction and hence to the precession 0flarlzatlon in both the bound state and scattering regimes. In
Mercury’s perihelion“ Sec. Ill we demonstrate how this situation can be realized

(i) Spontaneougor hidden symmetry breaking, wherein experimentally and discuss the confrontation of theory with

the Lagrangian remains invariant, but the symmetry is no{ecent experiments. Our results are summarized in Sec. IV.
present in the ground state. Familiar examples include con-

densed matter physics, where the spontaneous violation of

rotational invariance by the creation of spin-correlated dod]. ANOMALIES IN QUANTUM MECHANICS

mains in materials such as iron leads to the phenomenon of

ferromagnetism, and the spontaneous violation of local To understand how an anomaly is realized in quantum
gauge invariance by the condensation of spin- andnechanics, we first review the partial wave formalism, in
momentum-correlated electron pairs in low temperature syswhich the solution to the time-independent Scatinger
tems leads to superconductivitglassical physics, whef@s ~ equation is expanded in Legendre polynomials,

(@ translation invariance-~ momentum conservation,
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1 r—oo i(kr+ m/4)
w(r)=2| aPy(cos) —Ri(r). (1) H(r) — et Tf(e) )
The radial functionsR|(r) obey the differential equation with
(henceforth we employi=c=1)
* i126,(k) _
1 d2 |(|+1) f(0)=—| 2 e' ® 1ein0. (9)
“smarrt Zmrz TV RN =ER(N). ) e 2k
A. Free particle In this case if we include the potential energy
For a free particleY(r)=0 andE=k?/2m, and we have V(r)=x&%(r), (10

the plane wave solution the scale invariance is maintained—indeed, at the classical

level, there is no scattering because no particles are de-

y(n=exp(ikz)= >, (21+1)i'j;(kr)P|(cosd), (3)  flected. However, the absence of scattering no longer holds

! once the theory is quantized. Actually this anomalous behav-

that is,a,=i'(21 +1)/k, R,(r)=krj,(kr) in the notation of ior should be expected because of the wave-like nature of the

Eg. (1). By using the asymptotic behavior particles—an incident beam even with zero impact parameter

can sense the presence of the potential spike=dd. Of

course, this scattering will occur only in the=0 channel,
because wave functions with# 0 must vanish at the origin.

To see how the scattering arises, we examine a scattering
solution. In momentum space the Satlirger equation be-

r—oe 1 ) ) comes
explikz) — 5o — 2 (21 +1)P,(cosh) (e —ekr=Im)y,

1
5 ﬁ(pz—kz)qﬁ(*)(p):—)\l//“)(rzo)a (11

Equation(5) is a linear combination of incoming, ", and
outgoing, €X", spherical waves with a phase shift be-
tween them in the channel having angular momenituaue S ):f d2re =1 PyH)(r)
to the centrifugal potential term{l+1)/2mr? in Eq. (2). P

The existence of thignergy-independemthase between in-
coming and outgoing spherical wave components can be u
derstood from the invariance of E@) under the scale trans-

kr
we can write Eq(3) in the form

j|(kr)r:>w—sin(kr—lg), 4)

where
(12

Js the Fourier transform of the scattering wave function. The
solution to Eq.(11) is

formationr_—>,ur, kK—k/u, which re-quir_es that t_he s_olution N - 2ma ) (r=0)
be a function of the produdtr, which is scale invarianit oM (p)=(2m)28%(p—k)— — (13
This condition is obviously satisfied by the spherical Bessel pr—ki—ie
functionsj,(kr), and would be violated by the existence of For consistency, we require
an energy-dependent phase. 5
In th_e presence of a potenpie}l, the asym_ptotic form of the S (r=0)= d-p HN(p)
scattering solutions to the Scldioger equation becomes (2m)°
(+) ol (+) L ’
+ - —1_ + — ] o
P — 2ikr 4 (21+1) 1-2mnygt ) (r 0)47Tlog iz (14
X P(cos@)[ e (kr2a(K) _ g=itkr=1m)] where we have regulated the otherwise divergent momentum
r space integration by introducing a cutoff parametermhen
=e'?+ - (o), (6) = 1 L
here V=0 = T iz (log AZKET 1 m) (15
02310 _ 1 We can obtain the scattering amplitude by taking the inverse
f(e)=>, (2l+ 1)Tpl(cosg) 7) Fourier transform and find
I I )
. [
is the scattering amplitude, ar®i(k) is the scattering phase P (r)=e*—2mx ¢//(+)(r=0)ZH§)1)(kr), (16)
shift introduced by the potential. Because the presence of the
potential breaks the scale invariance, the appearance of avhere
energy-dependent phase is permitted.
I_H(l)(kr):J dzp eip-r 1
470 (2m)?7 pP—kl—ie
B. 6°(r) potential
r—o
Now consider what happens in two spatial dimensions, for N ! gl (kr+m/4) (17)
which the asymptotic form of the scattering solutiofis 2\2mkr
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is the two-dimensional Green’s function. If we compare Eg.Becausep is defined via a quadratic equation, it is apparent
(16) with the asymptotic form Eq8), we identify the scat- that the character of the solutions must change when the

tering amplitude as discriminant
1 1 D,=(l+32+2m\ (27)
f(6)=— : (18) : - : .
27k 1 becomes negative. For repulsive interactions,0, there is

1
4 21,2 ;
mA + 27T|09(A k%) +if2 nothing unusual. In general, the orders of the Bessel func-
tions become irrational, but the problem can be solved as

To eliminate the dependence on the cutoff, we note that thg,a|. Because the wave function must be regular at the ori-

scattering amplitude has a pole at gin, we must have
A? '
E,.=— —e?™\m 19 1 r-=1
bs— ~ 5 € (19 uy(ry)/re \/TJPH/Z(I“) — Hsin(kr—pa, (28
indicating the presence of @ingle bound state. Using this .r _
binding energy as a parameter, we can rewrite (£§) as and the scattering phase shift can be read off as
2 - B 1 1\? T
f(6)= — 2 ' (20) 8= I+§— I+§ +2mA 5 (29

i

Iog( —2mEy a Because), is independent ok, this result is consistent with

which is now expressed only in terms of experimental quan:[he expected scale invariance.

tities. Equivalently, we can characterize the scattering ampli- NOW consider the case of an attractive potentiat,0. As
tude in terms of a phase shift long as the discriminant is positive, things go through as

5 before. However, oncB <0, the potential has overcome the
K 1) centrifugal barrier, and the order of the Bessel function
—2mE,/’ becomes imaginary First consider the case of a bound

; - ; ; ; tate, in which case the boundary conditionrasc de-
or in terms of the differential scattering cross section S ! ; .
9 mands that the solution be constructed in terms of the Bessel

1
8n(K) =80 cot‘1< ;) log

do 2 1 function K;z (ur), where we have define¢gD,=i=E, and
dQ 7k k2 @) he binding energy as
1+ 7 %log?| ———— 5
_ZmEbs Mm
EbSE (30)

The existence of this energy-dependent phase innth® 2m’
channel or of the fixed energy_bound state is clear evidencey, o asymptotic behavior is then
of anomalous symmetry breaking.

The manifestation of anomalous symmetry breaking in r—o o
guantum mechanics for the two-dimensional delta function U|(r)°<\/EKiEI(,LLr) — \[Ee‘f”. (31
interaction has been explored previodSlgnd was reviewed
to set the context for our primary topic—therd/potential. ~ The allowed values of. (and thereby of the binding energy
As we shall see, there is an anomaly in this case also, anate determined by the boundary condition that the wave
although there are similarities to th#(r) case, there are function vanishes at the origin. From the behavior

also important differences, one of which is the fact that there o
are experimental consequences. -~ o ™ | M
Kiz,(ur) — \/—EI Sint(E M & log|

5 .
C. 1/r? potential —arg{F(1+iE|)]}, (32

Consider the potential
N where arg indicates the phase of the following complex num-
V(r)=— (23  ber, we see that the wave function goes through infinitely
r many zeroes as—0. As a consequence, the spectrum be-
in three spatial dimensions. We define the partial wave amcOmes continuous and unbounded from below, implying that,
plitude R,(r)=u,(r)/r and find dgsplte its appearance, the Hamlltomqn is not self—a}d10|nt.
Similarly, the phase shift of the scattering wave function as
d® 1(1+1)+2mx 2 B r—0 is undetermined.

Tar’ r2 ~KR(N=0, (4) One mathematically attractive solution to these problems
is to define a so-called self-adjoint extension of the Hamil-
tonian by specifying a particular boundary conditionrat
=0.? For example, each member of the continuum of self-
adjoint extensions of this Hamiltonian can be characterized
()~ Vkrd, s 1okr),  VKIN,; 1o(Kr), (25) by the(energy-independenscattering phase shift as-0.1
We briefly discuss self-adjoint extensions in the applications
of the 12 potential, but this regularization method does not
p(p+L)=I(1+1)+2m\. (26) directly illustrate anomalous symmetry breaking.

so that invariance under the scale transformatienur,
k—k/w again holds. It is clear that the solutions to E2¢)
can be written in terms of Bessel functions

where we have defined
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We instead opt for an alternative route and introduce a A,
short distance cutofa and demand that the wave function A—=e'(25°7”’2)- (40)
vanish at this pointy,(r=a)=0, and that the physics be 2
independent of the choice of cutoff paramétethis pre-  On the other hand, for small values iofwe find

scription yields the points .
peny g Uo(1)/ T =Ag(3iz, (kN +iNjz (k)

argI'(1+ig))]—nm
Hnd =2 X = - 33 + Agiz, (kD) = iNig (kr))
In order that u,a—0, we require Z,<1 and, because r—0 (3kr)i=o coshmE,
i2)]=—vE =NE -

ardT(1+iE))] vE,+O(E))*, the energy becomes A F(1+iEo)( sinhrrEo)

1 (2e7)? —2mnlE k) iE

En’|=—% a e =1, (34 B 1 (skr)~'=o

sinhmEy ['(1-iE,)

In order that the ground state€ 1,1=0) energy remains

finit(i and well-defined as—0, we requireZ == {a) (1kr)iEo coshm=,
—07, which demands the scaling behavior +A; F(1+iEO)( sinhwEo)
P (“a)—z (35 1 (3kr) B0
Sqda) A2 T ) (41)
) i _ sinhmEq I'(1—-iE,)
This relation does not predict the value @f but rather de- _ .
fines the scaling oE ,(a) asa—0 in terms of theexperi- ~ The requirement thal(r =a) =0 yields
mental value of u=y2mEyg The corresponding ground A, €9(1+ife Eo—e iv(1—i¢)
state wave function is Az _ :
Az @9(1+i¢)e™0—e 1 7(1—i¢§)
o
Wodr)= —Jz_er"(’”) : (36) é+tano+i tanhimEo(1— £tano) w
The very existence of a bound state implies the presence of ¢+tano—itanhzm=o(1- £ tano)
an energy scale and the breaking of scale invariance as,ghere we have defined
result of quantization, just as in the case of the two-
dimensional delta function—a quantum mechanical example IF1-iZy)-T(1+iE,)
of an anomaly! ' :F(l—iEO)-I-F(l-I-iEO)’
Another similarity with the two-dimensional delta func- (43)

ti.on. pqtential is that there is but a single bound state. This  glo=(1ka)iZo=expi=,logika).

similarity can be seen from the fact that becai&g—0" _ ) ]
andD,>D,, the discriminant in any but thewave channel If we compare Eq(43) with Eq. (40), we can identify
must be positive so that no anomaiand no bound statean

1= (1—
occur. Similarly in thd =0 case but witlm>1, we see from So(K)— K :tan_ltanhszo(l ¢tano) (44)
Eq. (34) that such states cannot have nonzero binding ener- 4 &t+tano
gies, because In the limit that=,—0", we then have
= +
Eno 2 — - S_>O f— 1
NP _ a—2@(n—-1)/E 1 1-vyE,logszka
e 0. 3 T — Y g
Eio s S tan So(k)— — |~ = 7=, )
' o o . 4) 2 yEo+tan=, log tka
We summarize this discussion with the observation that from
Eq. (27) and the following, there exists a critical value of the Using the scaling behavior
coupling constant, @\ =— 3, below which there exists a _
single bound state and above which there are no bound =z (a)= T . ¥, (46)
states. log sua
We can also consider scattering in the presence of an
anomaly. In this case the solutions of the partial wave equate find that
tion must be linear combinations &f("(kr) andH(?)(kr): 7 1-cotsy(k) -
Uy (1) T = AJHO (k) + AHP (k). 39) ta’( So(k) - Z) " T coton(K)  logkd/ u2 “7
From the asymptotic dependence which yields the partial wave amplitude
r—oo 2
/ i (kr— _ 1 1
ul(r)/\/F N _(Alel(kr (112)pmr—ml4) _ _
+Aze—i(kr—(l/2)p77— 7T/4))’ (39) IOgF -m -
Yz | !
then for thes-wave channel in whictg,— 0", we identify Iogk—+ -
the scattering phase shift via w?
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As a check we verify that that Eq48) has a pole at the

-

bound state energy?=2mE,= —2mu?. o(r)= P T (54)

Because 4t

Ei=V(I+ H2—2m|\|>E,=Vi-2m|x|—>0, (49 the potential energy for a chargen the vicinity is given by

we see that there is no anomaly in the reswave states so epr o cosh
that the scattering phase shift is given by its nonanomalous V(r)= 3T 7 (55
value given in Eq(29). The form of the scattering amplitude 4mr
is

which has the desired r¥ dependence. Point dipoles are not

1o | o physical, but a good approximation is provided by a polar
f(0)= EZ (21+1)i" exp(i 6 sind|) Py (coso) molecule such as water and the point charge can be taken to
=1 be a nearby electron. To analyze this system by means of the
1 1 formalism developed in Sec. Il, we write the bound state
, (500  solution as in Ref. 16:
k k2 K2 _
|Og—2—7T/|Og—2+7T 1
( H H ) YN =—u(re(o). (56)

where 4 is given by Eq.(29). Then the equations determining the radial and angular de-

pendence are given by

D. An aside 1 d?2

_%W+W},r2 u(r)=Eu(r), (57

Before proceeding to applications of this formalism, it is
interesting(but unrelated to considerations of the anomhaly
that there is another curious feature of the? Interaction, as (I:2+ 2mo cosh)O (6)=vyO(0), (58
previously pointed out by Kaysér.If one solves for the
classical scattering angle for motion in the presence of such and the separation constapts related to the actual coupling
potential, the result is o of the point-dipole potential by Eq58). If we use the

normalized Legendre polynomials

L
ac,=7r(1—— , (51)
JLZ4+2mA (2|;1)P,(cose), (59)

wherelL is the angular momentum. Taking the interaction to
?edrepulsive X>0) and solving for the cross section, we 4¢ 5 basis, Eq58b) can be written as a matrix equation
in
dog 1 L [dL| A 1-x - M0, =0, (60)
dQ  p?sing|dg| 27E x%(2—x)Zsinmx’ (52) with
wherep=+2mE is the incoming momentum, and we have
definedx= /7. Thus the cross section imear in the cou- =5, ,(1(1+1)— y) +2mo
pling constant, in apparent violation of the simple Born ap-
proximation result when the potential becomes weak. In Ref.
15 it is shown that the same cross section results from a [+1 s
guantum mechanical evaluation. The resolution of the appar- + 21+ 1)(21+3) I+
ent paradox lies in the fact that the classical scattering con-
dition in Eq. (51) can be satisfied only whem®>1. This  Equation(61) is an eigenvalue equation, for which the exis-
condition can be seen from the resul#>1 which implies tence of a solution requires that
that

|
J2I—D2l+1) P11y

. (61

_ 2mo

2 —22 X 53 RN

mA> 2 X(1—x)2" (53 V3

Thus the classical result corresponds to the strong coupling 2mo 5 Admo

regime, where the Born approximation is not appropriate. detM, = det _\/§ - _\/1—5 R 62)

dmo

Ill. APPLICATIONS 0 N

A remarkable feature of the above analysis of the? 1/

potential is that this interaction is realized in nature. As has

recently been emphasized, one such application is to that oflaquation(62) can be easily solved numerically by succes-
charge interacting with a point dipot€ Because the poten- sively evaluating thex n determinant, which converges ex-
tial outside an electric dipolp is given by tremely rapidly:
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breaking effects. It is clear that the presence of explicit
breaking does not affect the existence of a critical moment,
as expected from the quantum mechanical anomaly. How-
ever, the size ofp* is affected, as can be seen from the
comparison of experimental and theoretical sizes of the criti-
cal moment. This difference is perhaps not surprising, be-
] cause in QCD, the combination of explicit and anomalous
symmetry breaking results in a value for th8— vy decay
rate very near that predicted by the anonfaly.
E It is interesting that a second application of the?Ipo-
tential has recently been discussed. In this case it involves
the interpretation of an experiment involving the interaction
of a neutral but polarizable atom with a charged wi&e-
cause the electric field generated by the wire falls off linearly
102 s ) , X ) with distance, the induced electric dipole moment has the
2 4 6 8 10 form
Dipole moment u/D

- - . N
o o (o]
[=] - N

Electron binding E /meV
]

Qe
p: 4’7TCYEEOC_, (67)
Fig. 1. Shown are data reported in Ref. 17 on experimental anion binding r

energies. Note that there seems to exist a limiting valyg=2D, where . . . . .
D=1 debye=1x10~% esucm. Becausea~24 D, we have p.; where ag is the electric polarizability. The corresponding

~0.864,. interaction potential is
1 «a
U(n=-5pEx——7, (69

n=2: (2mo)?=—-3y(2—1y), _ _ _
63) and falls off as I/°. The issue here is not the experimental
appearance of a critical value of the coupling constant be-
4y : cause the attractive rff potential is always critical in this
- 5(6——7) cylindrical two-dlmenslor_lalproblem,13 no matter what the_
strength of the electric field produced by the charged wire.
From our study of the i potential in Sec. IIC, we know The intriguing aspect of this experiment is that the atoms are
that there exists a critical value of the coupling constantpbserved to disappear from the system with an absorption
2mrn=—1%, below which there exists a bound state andcross section which can be fitted by a classical argurifent.
above which there does not. Hence from E8pR), we ob-  An analogous treatment of the two-dimensional Igoten-
serve that there must exist a critical value of the dipole modtial, regularized and renormalized as done here, would have
mento*, defined via only bound state and elastic scattering solutions, and no ab-
sorption. Bawin and Coon utilized a method suggested b
detMy/(y=—3,2ma™) =0, (64) Ra(fl)iriLg to sum over the infinite number of elasticgs?:atteringy
such that a bound electron-polar molecule state, an aniosolutions of the self-adjoint extensions of the?lihteraction
can (canno} exist for values of the dipole moment larger to obtain a quantum mechanical expression that displayed
(smalley than this critical value. From Eq63), we find  absorptiorf’ As the parameters of this initial experiment cor-

n=3: (2mo)?=—3y(2—v)
1

2mo*=1.270 ..., thatis, responded to the classical limit established by Kaysémne
4 classical limit of their quantum mechanical treatment recov-
p* :_770* —0.64Ga,, (65) gred the experimental sitqation. However, further discussion
e is beyond the scope of this paper.

whereay=1/me is the Bohr radius.

This prediction can be checked experimentally, and studieb/. CONCLUSIONS
have been conducted attempting to measure the binding en-
ergies of anion systentd.It has indeed been found that a
minimum dipole moment exists, as shown in Fig. 1; ther

The phenomenon of symmetry breaking is universal in
ephysics, but although explicit and spontaneous violations are
: - . well known and are generally treated in introductory courses,
ioes seem to e|>(;|st§ a mmm:ju;n d|phole bmomepgxp.d the same cannot be said of quantum mechanical or anoma-
=0.862a, as would be expected from the above considery, s symmetry breaking, where a symmetry is valid at the

ations. Note that there is a bit of a subtlety here in that a real|assical level but is violated due to quantization of the
molecule isnot a point dipole. Rather the potential for & heory. This omission is presumably due to the fact that most

finite dipole can be written as familiar manifestations of the anomaly, for example, the two-
ge( 1 1 epcosé photon decay of the neutral pion, occur in the context of
V(r)= yps R_+_ r = WvL Upi(r), (66) quantum field theory and belong in the realm of elementary

particle physics. However, this need not be the case. We have
which is the superposition of a pure point dipole interactionargued here that one can present this subject within the realm
with a scale symmetry-breaking interactibiy(r). Because of ordinary quantum mechanics by studying the violation of
experimentally such an explicitly symmetry breaking termscale symmetryr— ur, k—k/w. In earlier papers in this
cannot be eliminated, the observed critical moment is due tgpurnal, the case of a two-dimensional delta function was
a combination of the anomalous and explicit symmetryexamined® However, this case is purely an intellectual ex-
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ercise and has no experimental consequences. In this papepomenaedited by D. Grauden@Sl, Villigen, Switzerland, 1998
we have examined the rf/ potential, which is anomalous 828‘3’ f‘JtrA‘TxaL"p'e' S('j i' TreiT;;V’ R|a Jsac.ki";’.}.B' Sz.umino’ anldgaEs' witten,
. . g . . . urren epras an nomall ori cientific, singapore,

and Whlchdoqshave .eXpenmental ramlflgatlons n .the. exis- 9See, for egample, J. F. Donoghue, E. Golowich, an?j Bp R. Holsiym,

tence O_f a cr|t|(_:al dlp0_|e mom_ent aIIowmg the blndlng of namics of the Standard Modé&Cambridge U.P., New York, 1992Chap.

anions in atomic physi¢5 and in the recent stut\:i,g/ of the .

interaction of a polarizable atom with a charged fte. 10, R. Mead and J. Godines, “An analytic example of renormalization in
Finally, it has long been known that the main features of two dimensional quantum mechanics,” Am. J. PH§8,.935(1991); B. R.

the quantum mechanical three-body bound state and soméfolstein, “Anomalies for pedestriansjbid. 61, 142—-147(1993.

striking aspects of nuclear three-body scattering are due to arft- Jackiw, “Introducing scale symmetry,” Phys. Todaf(1), 23-27

effective 1f2 potential, built from the relative distances be- 12(197

t th ticl includi fact h R. Jackiw, “Delta-function potentials in two- and three-dimensional quan-
ween € paruclés, Including mass ftactors where ;. mechanics,” inM. A. B. Beq Memorial Volumedited by A. Ali and

. 1 . . . . .
appropr'laté This eﬁe_cuv? potential IS d'SP|ay9d MOSt  p. Hoodbhoy(World Scientific, Singapore, 1991pp. 25—42; |. Lapidus,
clearly in recent effectlve; field theory_ qllscussmns_ of three- “Quantum-mechanical scattering in two dimensions,” Am. J. PI5@.
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