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In a wide class of potentials the exact asymptotic dependence on finite distance R from
scattering center is established for outgoing differential flux. It is shown how this depen-
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1. Introduction

According to the common rules I8 the differential cross-section do for the scattering
on hermitian scalar spherically symmetric potential U(R) is uniquely defined by on-
shell scattering amplitudes f*(q;k). These amplitudes are defined as coefficients
at outgoing or incoming spherical waves being the first order terms of asymptotic
expansion of the scattering wave functions Wi (R) for R = |R| — oo, R = Rn,
gq=Fkn k=kw, n®>=w?=1:

VER) —> O 4 g T+ O(R?), 0
Ve R) = (V5 (R))", Tak) = ((a-k), 2)
do = |f*(q; k)|2 dQ(n), where: o= / | £ (km; kw)‘2 dQ(n), (3)

is the respective total (elastic) cross-section, which also does not depend on R. Of
course the terms of order O(R~2) in Eq. () are unimportant™ for both definitions
@). However, R is finite for real experiments, and the recent investigations®? of
(anti-) neutrino processes at short distances from the source reveal a possible viola-
tion of inverse-square law for event rate corresponding®® to (@) and (B). Since the
macroscopic parameter of distance R has very peculiar meaning when it is consid-
ered in the framework of quantum field theoryZ1¥ it seems natural and convenient
to elucidate this problem at first for nonrelativistic quantum-mechanical scattering.
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In the following sections the closed formula and recurrent relation for coefficients
of asymptotic expansion of wave function \I!ff (R) in all orders of R~* are obtained in
terms of the on-shell scattering amplitudes f*(q;k) only. This expansion together
with obtained exact asymptotic expression for interference fluxes reveals for finite R
the necessity to replace the differential cross-section (@) by the normalized outgoing
differential flux. Nevertheless, the second definition of Eq. (8] for total cross-section,
which thus is replaced by total outgoing flux, remains unchanged together with the
unitarity relation and the optical theorem, as all their asymptotic power corrections
precisely disappear.

2. Asymptotic expansion of scattering wave function

To show the nature of asymptotic expansion we have to recall some propertiest?

of wave functions and amplitudes (). The function ¥ (R) (), being solution of
Schrodinger equation for the energy E > 0, satisfies Lippman-Schwinger equation:

oM 2M

(VR + k) UER) = V(R)VE(R), for: k2 = B, V(R)=Z3U®R), (@)

VER) =0 [ (e wi () = & 4 JE(R) (5)
k 47|R — x| A e AT

Here the differential vector-operator and the operator of angular momentum square
in the spherical basis n, 1y, n, have the following properties for R = Rn,

n = (sin?dcos g, sin¥sinp,cosvd), ny =dhn, nNesind =0,n: (6)
1 n

VR =ndg + }—z3n, (n-VR) =0r, On=mn90y+ siﬁaw’ (7)

M-8,)=0, (On-n)=2, (Mx8,)?=08% (nx8y)=iLy, (8)

—82=L.=2R(n-Vr)+R?*((n-Vr)*— Vg&), whence, (9)

for cosy=c: Ln=Lj=—1[0.(1-c*)d.+(1- cz)*lai} , (10)

and the well-known representation also is used for arriving from point x to point R

spherical wave being free 3-dimensional Green function:*

oEik[R—x]| Bq  eila®x)
mR—x| / @r) (@ — 2 7 10)

When x = 0 it satisfies the well-known inhomogeneous equation:

(11)

otikR

= —4§3(R). 12
=~ &(R) (12)
Then the power index +ikR is defined in the sense of analytic continuation with a
small real negative admixture 5 +ik — —(—k?F1i0)'/? = £ik — 0, which is almost
nowhere written but is everywhere assumed. The following Lemma is in order.

(Vi + k%)

Lemma 1. When R = Rn, x =rv, v = (sin S cos «, sin Ssina, cos 8), |x| =r < R
and operator L, = L2 (orn s v) is defined by Eqs. ({)-{I0) with positively defined
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operator Ly —l—% = (An+ %)2 such that An—i—% =4/Ln+ % is also positively defined,

then:
eFRIR=x )\ (FikR+0) -,
— n $1k(n~x) ~ 13
47|R — x| 47 R ¢ (13)
Ly — -1
isz #1_[1 [ " ( )] Fik(n-x)
~ 1 sRnex), 14
wr T Z sI(F2ikR)* ¢ (14)

Proof. The expression ([I3) for R > r is a formal operator rewriting of the usual
multipole expansion of free Green function® ([I)) with the help of self-adjoint oper-
ator formally introduced instead of I: [ — A, but never really arising and with the
help of multipole expansion of plane wave® that are listed also in Ref. M formulae

(8.533), (8.534):

etik|R—x]| 7 1 = 1 " kr) (2l + 1) P, 1
iR —x| 4kar;Z Xi(FikR 4 0) ¢hro(kr)(2l + 1) B ((n-v)), (15)
eFim) - ;ZJF vro(kr) (2L +1)P((n-v)), (16)

Here the spherical functions ¥, (n) = (n|lm) and Legendre polynomials P;(c) be-

ing eigenfunctions of self-adjoint operator (I0) on the unit sphere for ¢ = (n - v)

or ¢ = cost satisfy the well-known orthogonality, parity, completeness and other

conditionst > L34 (A7) — (A7) with the delta-function dg(n, v) on the unit sphere.
The solutions x;(Fikr), ¥yo(kr) of free radial Schrédinger equation:

{72 <% a,%w?ﬂ Yrotkr) _ i 4 1y Yrolkr) (17)

r r

are defined by Macdonald K,(z) and Bessel J)(y) functions*44 (A8) — (AI3)
that for integer [, i.e. half integer A = [ + % are reduced to elementary functions:

1/2
xi(bR) = (g) K3 (0R),  xi(bR) == e Z S,l_l:—s%m (18)
The function K (z) (A8) is entire function™?2 of \2. This is the reason the well-
defined operator A,, introduced in Eq. ([I3]) does not appear explicitly.
The expansion (I4)) for large R is the known asymptotic expansion of function
([@3), being infinite asymptotic version™*12 of the sum (X)) for arbitrary non-integer
I, larg(bR)| < 37/2, is supplemented by observation™*!2 for the product:

S

U+ YTo-psrm =L+ - pe-1).  (19)

(1 —9) e e
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Due to ([A) it may be factored out” from the sum over [ ([I5]) as operator product
in the right hand side of Eq. ([Id), thus converting this sum into the expansion (4

Remark. The operator Ly, in Eq. (I4]) may be replaced by operator in square brackets
of the left hand side of Eq. (I7)) or by the similar operator with interchange of r = k
with the same result.

Theorem 1. Let the potential V (r) have finite first absolute moment and decrease
at r — oo faster than any power of 1/r. Then the integral Jki(R) in Eq. (A) for
sufficiently large R admits asymptotic power expansion whose coefficients are defined
by the on-shell scattering amplitudes f*(q;k) only. This expansion has asymptotic

sensel® even though the potential V (r) in Eq. {4) has a finite support:

TER) ~ i {fi (kn; k) + Z h;];:Rl)‘)} (20)
with: hE(kn;k) 5 H —1)] f(kn; k), (21)
or: h*(kn;k) = ‘C"%(_)hf_l(kn; k), k= kw, (22)
and is equivalent to infinite reordering of its asymptotic multipole expansion 2
T R) = = 3 (FikR)2) + Dt ()P (+n ), (23)
§=0
with: h¥(kn;k) 3 Z 2 + 1) (k)P (£(n- w)), (24)
and: f*(kn; k) = h¥ (kn; k) = i (25 + Dy (k)P (£(n- w)), (25)
j=0
fore 14 (msk) = = 1= [ @OV ()W), x=1v, (26)

as the usual on-shell scattering amplitude 22

Proof. Suppose at first the finite support for V(r) at r < a. Then for R > a we
can directly substitute the expression (I3]) into representation (Bl for Jki(R) with
the following result after interchange of the order of differentiation and integration
for Fourier transformation (26), what is justified!? also for asymptotic series (I4):

TER) ~ @ FE(kn; k) ~ (27)

S

. H [Ln = p(p = 1)]
: *(kn; k). (28)
Z sl(F2ikR)* 1 (s

=1
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This is exactly the asymptotic expansion (20) with the coefficients AT (kn; k) defined
by Eq. I). However, that is not the case for the potential V(r) with infinite
support. Estimating it for r > R as [V(r)| < Cx/rN with arbitrary finite N > 1,
two pieces of correction that should be added may be easy estimated as:

+ik|R—x|
ApT* = - / d*x e —— V(1)U (x), (29)
J 47|R — x|
Apft = Xa TIRE) / dPx FRERY (1) B (x), (30)
0
r>R
+ [19]|Cw + [I¥]|Cx -1
|ARJ | < (N — 2)RN,27 |ARf | < (N _ 3)RN—2 [1 + O(R )} ) (31)
with the finite norm5 || W|| = sup|¥(x)| of functions i (x). (32)

Due to the arbitrariness of N > 1 for these corrections the asymptotic expansion
conserves its form (20), [28) but acquires additional asymptotic sense*? compared
with expansion (I4).

Indeed, due to the partial wave decomposition (25 of scattering amplitude
fT(kn; k), expression (Z7) is the formal operator rewriting of asymptotic multi-
pole expansion® (23) of jki(R). Unlike its exact expression given by Eq. (@) the
expansion (23]) according to Eqgs. (IT), (I8) is a solution of free Schrédinger equation
like Eq. (I2) with R > 0. When V(r) = 0 at r > a, the Schrodinger operators in
@) and ([I2) coincide for R > a. Then both asymptotic relations [23)), 7)) become
exact expressions due to convergence of the expansion (23] for R > a in the usual
S50 similarly to expansions (IH), ([IG). At the same time, the expansion (20),
i.e. (28), conserves its asymptotic sense acquired according to Lemma 1.

The assumed potential V' (r) for the case of infinite support has only finite ef-
fective radius® and provides a slowdown fall®® of partial waves at j — oo, e.g. like
In; (k)| ~ e, 7 > 0 for potential of Yukawa-type. This is enough for convergence
of partial wave decompositions ([24)), ([25)) but can not provide convergence of the
multipole expansion (23] which now also acquires the asymptotical sense. Its infinite
reordering (23)) — (20), (24) given here simply “displaces” this asymptotic sense
from the summation over angular momentum j onto the always asymptotic expan-

sense

sion on integer powers R~° whose coeflicients now are well-defined as derivatives
1)) of scattering amplitude with respect to ¢ = (n - w), or as convergent partial
wave decompositions (24)). Thus, all these coefficients are observable. O

Remark. From the estimations (29) — (32)) it is also clear®™ that even standard
asymptotic (Il requires for the potential N > 3 at least. More generally these
estimations mean that for |V (r)] < Cx/rN with 7 — oo the asymptotic expansion
[28)) is applied until s < [N — 3]. Thus, the further consideration is possible only for
potentials V' (r), specified with the conditions of Theorem 1.
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3. Differential fluxes and unitarity relation
To make a careful analysis of different fluxes, the following Lemma 2 is useful.

Lemma 2. The function e*"'=(V)] 45 o distribution on the space of infinitely

smooth functions H(n) on the unit sphere n(cos®, ), parametrized by (@), has the
following exact operator representation for c = (n-v). Let H(c) be defined as:

Hc) = /dcpH(n(c, ®)), then: (33)
’ 1

/dQ(n) etkrli=m vl 9y (n) = /dc ekr(=)F(c) = (34)

_ / de [5(1 - ¢) — 2% §(1 + ¢)] (—ikr + 8e) " H(e). (35)

Proof. With dQ(n) = sinv dv dp = —dc dy the result is obtained by using integra-
tion over ¢ by parts infinite number of times. The operator in Eq. (3] has a sense
of a formal series over powers of differential operator J.. The well-known standard
asymptotic relation’™ of the first order on 1/r corresponds here to . + 0. O

Now let’s consider the elementary flux of non-diagonal current J4 x(R) through
a small element of spherical surface nR2d2(n), for R = Rn, q = kv, k = kw, and

> — — — — — PR
VR =VR —VR, Or = 0r— 0r = (n . VR) according to (@) — ([@). Total flux
through any closed surface is zero because the current is conserved® due to Eq. [):

Jox(R) = % {(w;(R))* eRw;(R)} . (Ve-Je(R)) =0, (36)
R240(m) (0 Tqx(R) = FEa0(n) 3. | (¥5(R)" T (R)] — (31)
— R%dQ(n) g kRO (n . (w +v)) + (38)
B0 F k) (xR (ik) ) £ (rms )| - (39)
—%(Z_“) {(e“fR“—m'vﬂ e [z(n V) +1- z%] Xz (2)fF (km; kw))z_oZ-k_R (40)

_(V:w>*}. (41)

Here, for sufficiently large R, the expressions (B) and 7)) for the wave function
U (R) were used. As well as. in Eqs.ﬂ(BEl), @), the arrows point out the directions

of action for the operators Ay and A, from Lemma 1, that in fact are directions
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— —
of action for the operators £, and £, ([@). Integration of separate terms over solid
angle dQ)(n) with fixed R gives here the following interesting results. For the flux
of incoming plane waves ([B8)), since ((w — V) - (w + v)) = w? — v? = 0, one has:*
ko
R? / dn) 5 eRR@(@=)) (1 . (w + v)) = 0. (42)

For the flux (B9) we can ignore the arrows of A, because operator £, ([IQ) is self-
adjoint on the unit sphere. So, the Wronskian (A.12)) leads to the total flux:
dQ(n)

/ e [}+<kn; kv) (Xxn(ikR)BRXXH(—mRO £t (kn; kw)} = (43)

—k /dQ(n)}*(k:n; k) £+ (ks hw).

This is the total non-diagonal outgoing flux for finite R, obtained from the line (39),
now taking into account all possible asymptotic power corrections. Nevertheless, it
looks exactly like right hand side of unitarity relationl™® independent of R. It is
clear the same result may be obtained using the partial wave decomposition (25)
with the help of Eqgs. (A3), (AI12) (clf. (B3), (B3, (GE) below).

The lines (@), (I)) represent the non-diagonal interference (v # w) between
incoming and outgoing fluxes. According to Lemma 2 for the first exponential of
[@0), it takes place only in corresponding forward and backward directions. Note

2ikR

that any averaging over R due to rapidly oscillating exponent e eliminates® the

contribution of backward direction in Eq. (38]). With this elimination and definition
B3), the line {Q) for (n-v) = ¢ gives:

_ / iﬁ/ o000y e - o)

By moving the operator from denominator into the exponential for z = 0 — ik R:

o0

= /dgeZ(le)fﬁac, (45)
0

eZ

(Z + )

after simple commutations, one obtains for Eq. (44)

2 [ee)
__Z ~¢0c |\ () (6.4 L) e20-9 | #+ (kn:
2i/d<p/d§e |:XAH(Z) <8z + z> e f7(kn; kw)
0o 0

with ¢ = 1 where possible. For the arbitrary term of partial wave decomposition

c=1
. (46)
z=0—ikR

@38) the scattering amplitude here is effectively replaced by Legendre polynomial:
1 (kn; kw) — P; ((n - w)). This substitution immediately replaces X3 (2) = x;(2),

thus permitting to make all remaining ¢- integration and .- differentiations in the
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closed form by using the relations (AL6), (A11)), (A12), wherefrom for:

27
[aeP, (o) =2npy () P PR =BO-9 (4D
0
it follows:
_Z 60 N a-0] pmoonl” =
/dcp/d§ o) (34 3) e Pmew| (45)
—-2n (v | (3.4 i)/dse 19 60y ) - )
0 =0—tkR
—-Zen(een oo (3.4 1) 2 - Th e, 0
or, equivalently: (@4) = Q) = — %f"’(kv;kw). (51)

Thus, the contribution of the lines (@Q), (@I into the full flux in accordance with
the left hand side of unitarity condition™™ becomes equal to:

4 *
- —” [er(kv few) — f*(kw;kv)] = —dr Im f*(kv; kw), (52)
but now taking into account all the possible asymptotic power corrections:
4 *
% Im fH(kv;kw) = /dQ(n)f+(kn; kv)fT(kn; kw). (53)

The diagonal case v = w in Eqgs. @3], (53) represents the optical theorem™ ™ with
total cross-section o of Eq. (@) in the right hand side and is not changed by these
power corrections also. Moreover, since the operator of angular momentum square
(IT) depends for this case only on one variable: £, — 9.(c? — 1)d,, the result (5
may be checked in first several orders of R™* directly from Eqgs. 21), (28]), (#4]) on
operator level.

However, for finite R the differential cross-section of Eq. [B]) has to be replaced
now by diagonal outgoing differential flux EE(R) (3) normalized™ ™ to the density
k of incoming flux [BY) for v = w. It still contains asymptotic power corrections
defined by Eqs. 21), 28) of Theorem 1:

P o[t (v kR B k) s Gk = G0
= |fT(kn; kw)| - k_lR Im [f"'(km kw)L nf+(kn k‘*’)} 4(/€1R)2

2

.{z

— Re F‘”r(kn; k) L2 fF (k; kw)} } +0 ( ! )



April 4, 2017 1:24 WSPC/INSTRUCTION FILE 17'mpla

On asymptotic power corrections to differential fluxes and generalization of optical theorem for potential scattering 9

In terms of partial wave decomposition (25 with corresponding phase shifts d,(k),
for c = (n-w), n;(k) = nj(k), kn; (k) = e®i® sing;(k), Ay = (G +1) =11 +1),
with the help of (AT3) — (AI5), it reads:

o(R) & e . DalikR) 0 rx, (~ikR))

) = ;,j_:o(% +1)(2) + L)in (k) (k) Pi(€) Py (c) o . (55)
(kR dpy(—ikR)) | Ay A% |

where: 2ik == okr swreE ¢ <ﬁ) ' (56)

The power corrections arising in (54)) or in this two-fold series for j # I in (Bf), may
be observable for slowly moving particles with k& — 0. They contain only real or
imaginary parts of the products %l(k)nj (k) and automatically disappear for j = I
in the total outgoing flux & being the total cross-section [B)) now, or in the limit
R — oo for outgoing differential flux:

c=0= /dQ(n) %(i;, do = R}me do(R). (57)

Since for real potential the Born approximation for amplitudes f*(kn; kw), n;(k) is
real X4 it is not enough to obtain the non zero first order correction R~' from Eqs.

B4) - E6). The relations 7)), (@3), (B4) — (B1) and the observed disappearance of

asymptotic corrections to Eq. (B3] are the main results of this work.

4. Identical particles with spin

In case of mutual scattering of identical Bose- or Fermi-particlesl™™ with spin S
one faces symmetrical or antisymmetrical scattering wave functions, amplitudes

and respective cross-sections. The proper generalizations are straightforward, and
instead of (@), 27) one has:

R r X3 (—ikR)
Vs (R) == T Y 4 —Samp— ) (b ), (59)
with: Fa)(kn; k) = ft(kn;k) £ fT(—kn; k), and then: (59)
do(1(R) L VS -
d(T()n) =5 [Fa)(kn; kw) (Xx., (’kR)aRXXn(_’kR)> F (kn; kw)} . (60)

Of course, the partial wave decompositions like [23]), (B5) contain now only even j
for FZ:L) and only odd j for F(i). The normalized outgoing differential fluxes (GQ)
again have to replace corresponding differential cross-sections. For the scattering of
nonpolarized identical particles the outgoing differential fluxes are defined by the

usual way? as:
dUs(R) = W) (S) dU(+) (R) + W) (S) dO’(,)(R), (61)

with the well known™ probabilities w4 (S) for Bose- and Fermi-particles. Similarly
(E7) integration of the flux (61I), (60) over solid angle again obviously leads to the
independent of R total cross-section og for identical particles with spin S.
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5. Conclusions

As it is well-known, for a point-like, even anisotropic, stationary source of classical
particles, or rays of light, or incompressible fluid, the radial flux of outgoing par-
ticles in a given solid angle does not depend on distance R at all, due to the local
conservation of classical current density.

Turning to the wave picture, such independence is true only for the flux of pure
spherical outgoing or incoming wave in Eq. () (see the first term in the right hand
side of Eq. (B4))). That all results in well-known inverse-square law for event rate,
which explicitly contains 1/R? (see, e.g. Refs®®). A possible violation of this law is
the subject of our interest. We show this violation is a pure wave effect, arising from
nonsphericity of the exact scattering wave, i.e. from the next terms R~ (s > 1)
of asymptotic expansion. The last is investigated here up to all orders, also using
again the conservation of corresponding current.

To this end, using the operator-valued asymptotic expansion for free Green func-
tion of Helmholtz equation, the asymptotic expansion for the wave function of po-
tential scattering on inverse integer power of distance R from scattering center is
obtained. It is shown how these power corrections affect the definition of outgoing
differential flux and interference flux.

Surprisingly, these power corrections precisely entirely disappear in total outgo-
ing flux, unitarity relation, and optical theorem due to integration over solid angle
at finite R. Thus, the applicability domain of these relationsH naturally extends to
finite R for fast ehough decrising potentials.

It is worth to note that all obtained corrections are defined by observable on-
shell amplitude or partial phase shifts. Nevertheless, the real observation of this
dependence involves reevaluation of the phase shifts extracted earlier in fact from
outgoing differential flux at finite R (B4)), (B5), (@) without taking into account
any corrections on the finite distance.

Although asymptotic expansion by its nature has no sense as infinite sum, the
obtained asymptotic expansions of the wave function and outgoing differential flux
have a sense up to any finite order s of R~* if potential U(R) has a finite support or
decreases for R — oo faster than any power of 1/R. Otherwise the maximal order
s of their validity is governed directly by the potential according to the Remark for
Theorem 1. For example, the first two corrections, given by Eq. (B4), i.e. Eqs. (53)),
([BGl), may be applied to potentials with N > 5. Their disappearence on integration
over solid angle in Eq. (B7) obviously takes place separatly in each order of R™*.

So, following the authors of Ref.,*
under consideration seems to comply naturally with the mathematical require-

we come to conclusion, that “... the physics

ments”.

aCalculation similar to (@)-([E0) reveals exact disappearance of the contribution of backward
Axd

direction in Eq. ([B5) even without averaging over R because (x;(z)9d:x;(z)) = 0.
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Appendix A.

The following relations for spherical functions and Legendre polynomials are nec-

2

essary® B for n? = v2 = w2 = 1, with n(cos ¥, @), v(cos 8, a) parametrized by

Eq. (@) and Lemma 1, and ¢ may be equal to any of values cosd, (n-v), (n-w):

L2V () = 10+ DY), L2Pi(e) =10+ DA, (A1)
[ vy = o, Y LR (@) = damy), (a2)
1=0
!

S vryre = 2 e o), corm = ven). ()

m=—1

Y] (e3) = i/ 2{; ! Smo, Y] (m) =i 2{; ! Pj(ng = cos?), (A4)

. e = % b

wherefrom: /dQ(n) P ) By () = P (). (A5)
2m

P, (cos B) P, (cos®) = % /dgoPl (cos B cos ) + sin Bsin ¥ cos(p — a)) (A.6)
0

l S

and besides: P(1—¢&) = Z (L+ S): (=5) (A7)

s=0

(1 —s)!(sh)22s"

Macdonald and Bessel functions't™3 in definitions (I7)), (I8) are defined by the
relations, with |argu — 81 2| < 7/2, as:

coe ™A1

KA(U):% / %ti)‘exp{—g (t—i—%)} (A.8)
0eth2
wkr 1/2 1
Yro(kr) = (T) iy (br) = o [i7x0(0 — ikr) — i'x, (0 + ikr)] (A.9)
with: /dr bjo(kr);o(qr) = g&(q — k). (A.10)
0

By making use of (I8) and (A7) for integer [ and z = 0 — ikr one finds:

o0

Jagest-ona - g - X2 (A1)
z
0
The following well-known expressions for Wronskians® ' V j, [ are used:
> And
(X (tkR) 0 px;(—ikR)) = 2ik, or: (x;(2)9:x;(—2)) =2, (A.12)
g o0
(Xl (ZkR) 63)(]‘ (—ikR)) - Ajl dr . ) .
90k =1 ik | 2 x1(ikr)x; (—ikr)). (A.13)

R
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For the integral (A.13]) with integer j, I the Eq. (I8) gives:

o0 I+j

Ajl dr . ) . _ ) An(laj)
1 2k | r2 xu(ikr)x;(—ikr)) =14+ Ay ngo (n+ 1)(—2ikR)"+1’ (A.14)

R

min(n,l) (_l)s (l 4 S)' (,] +n— S)'

An(l, ) = Z sln—s)! (I —s)!(j—n+s)

s=max(0,n—j)

(A.15)
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