
Задание 2

Сдать до 17 (19) декабря 2014 г.

- 1. Оцените температуру вещества в центре Солнца, используя вириальную теорему (см. Л.Д. Ландау, Е.М. Лифшиц. Механика. М., 1973, с. 35). Вещество Солнца считать классическим (максвелловским) газом. Параметры: масса Солнца $M_{\odot}=1.99\cdot 10^{30}\,$ кг, радиус Солнца $R_{\odot}=6.96\cdot 10^8\,$ м , гравитационная постоянная $G=6.67\cdot 10^{-11}\,$ м 3 кг $^{-1}$ с $^{-2}$, "средняя" массы частицы Солнца $\overline{m}=2m_{_{p}}\simeq 2\times 1.67\cdot 10^{-27}\,$ кг.
- 2. Найти закон движения, траекторию и интегралы движения частицы с зарядом e и массой m, движущейся в однородном электрическом поле \vec{E} и однородном магнитном поле \vec{B} . Направление поля \vec{E} перпендикулярно \vec{B} .
- 3. Найти закон движения гармонического осциллятора под действием внешней силы $F(t) = F_0 e^{-\gamma t}$, если в начальный момент осциллятор имел координату x_0 и скорость v_0 .
- 4. Найдите функцию Лагранжа, уравнения движения системы трех частиц, связанных пружинками на кольце (рисунок). Кольца гладкие и остаются неподвижными при движении частиц. В начальный момент времени скорости всех частиц равны нулю, а координаты заданы условиями $x_1(0) = -x_2(0) = a$, $x_3(0) = 0$. Решите полученную систему уравнений, т. е. найдите нормальные моды колебаний системы. Запишите функцию Лагранжа в нормальных координатах. Изобразите схематично найденные нормальные моды.

- 5. Найти закон движения частицы, функцию Гамильтона которой $H(x,p) = A\sqrt{p} xF$. Как ведут себя импульс и скорость частицы при $t \to \infty$?
- 6. Построить функцию Гамильтона H свободной частицы с массой m, если известна ее функция Лагранжа $L = -mc^2\sqrt{1-\vec{V}^2/c^2}$ (\vec{V} скорость частицы). Найти соотношения, связывающие 1) импульс и энергию частицы, 2) импульс, энергию и скорость частицы. Исследовать полученное выражение H(p) в двух предельных случаях: а) $p \ll mc$ (т.е. $V/c \ll 1$) нерелятивистский предел; б) $p \gg mc$ (т.е. $V/c \sim 1$) ультрарелятивистский предел.