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Abstract

We propose a simple approach to solving the transport equation for high-energy neutrinos in dense and thick media.
Illustrative results obtained from some specific models for the initial spectra of muon neutrinos and antineutrinos propagating
through a normal cold medium are presented. c© 1999 Elsevier Science B.V.
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1. Introduction

During their passage through a medium, high-energy neutrinos and antineutrinos are absorbed and lose their
energy (and therefore regenerate) due to charged and neutral current interactions. In a normal cold medium,
like the interior of the Earth or a star, these interactions consist of νN (νN) and νe (νe) collisions. In
more exotic media such as hot galactic haloes filled with massive neutrinos [1] and at super-high energies νν
annihilations become important. As a result, the spectrum of extraterrestrial neutrinos, in their passage from
source to detector, is transformed first in the medium surrounding the source, then in the cosmic backgrounds,
and finally in the Earth. For media with thicknesses in excess of several neutrino interaction lengths λν this
transformation becomes dramatic. Therefore, a detailed study of neutrino transport through thick media, taking
into account neutrino regeneration, is one of the key elements in ultra-high energy (UHE) neutrino astrophysics.

In the last few years, several projects have been proposed [2] for the search of UHE extraterrestrial neutrinos
by detecting Čerenkov radiation from muons and electromagnetic or hadronic showers produced by neutrinos
in a transparent detector medium (water or ice) or in rock surrounding the detector. Two of these projects,
AMANDA and the Baikal neutrino telescope, are already operational; two others, ANTARES and NESTOR,
are under development. The ultimate, still remote aim of these projects is to make up a huge observatory
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with a sensitive volume of up to 1 km3 for the studying of UHE neutrino astrophysics and the search for
particle physics beyond the Standard Model [3,4]. A further increase of the sensitivity of underwater/ice
neutrino telescopes would be possible with techniques based upon hydroacoustic and radiowave detection of
neutrino-induced showers [5]. Recently, it has been shown [6] that the future (ground-based) Pierre Auger
Observatory [7] also has the potential to detect neutrinos of energies in the multi-EeV range through near-
horizontal air showers. Even more futuristic projects, such as SOCRAS, MASS, OWL, and the “Airwatch form
Space” Mission [8], are now under discussion. They are based on the “Space-Airwatch” method of detecting
and identifying giant Auger showers by means of the fluorescence they induce in atmospheric nitrogen observed
from outer space [9]. This method provides the possibility of studying cosmic rays, including gammas and
neutrinos, with energies above 10 EeV, by monitoring a fiducial area of 1061107 km2 with orbiting detector(s).
Evidently, the problem of neutrino transport through matter will grow in importance with an increase in neutrino
energy ranges accessible to observation.

The effect of neutral current on the electron and muon (anti)neutrino absorption and regeneration was
investigated for the first time in Ref. [10] for the case of initial spectra following a power-law. It was shown
that, within a simple approximation, the neutrino absorption length Λν exceeds the interaction length, λν , as
in the case of hadronic cascades. As a consequence, the regeneration correction to the neutrino penetration
coefficient grows exponentially with depth and energy.

In Ref. [11], the effect of neutral currents was studied for the spectrum of neutrinos originating from
annihilation of massive neutralinos captured in the solar core which do not follow a power-law and for the
spectrum of AGN neutrinos penetrating the Earth. In their calculations, the authors used the method of successive
generations and direct Monte Carlo simulation. In particular, it was shown, that the regeneration due to neutral
currents essentially affects the flux of the neutrino-induced upgoing muons. For example, in the case of AGN
neutrinos, the yield of vertical muons with energies > 100 TeV per one neutrino with energy of 20 PeV
(60 PeV) is roughly 100 (1000) times larger than that estimated neglecting the correction due to neutrino
regeneration. Clearly, the effect diminishes after integration of the muon yield over the neutrino spectrum, but
it increases fast when increasing the muon energy threshold.

Using a simple model for νN cross sections, it recently was demonstrated analytically [12] that the ap-
proximation of Ref. [10] has a limited range of applicability even for power-law initial spectra. Owing to
the strong energy dependence of the total νN cross sections, the effective absorption length, Λν , becomes
depth-dependent. As a consequence, the neutrino penetration coefficient, as a function of depth, does not follow
a simple exponential law. A similar situation is well-known in muon transport theory (see, e.g., Ref. [13]),
but for muons the magnitude of this effect becomes very small at high energies (above ∼ 10 TeV) 2 , while for
neutrinos it grows with energy and depth.

The goal of this work is to provide an elementary analytical method for the precise calculation of energy
spectra of high-energy neutrinos after their propagation through a dense medium of any thickness. The method
of Ref. [12] was developed for simplified models of the initial neutrino spectrum and the νN cross sections
(differential and total). Our approach does not require simplifications and is applicable to initial spectra and
cross sections of any form. In Sections 2 and 3, we will only consider the decreasing continuous initial spectra
most interesting for UHE neutrino astrophysics. However, the main idea of the method can also be extended to
a monoenergetic spectrum (see Appendix A). This extension may be useful, in particular, for simulating single
neutrino events for a neutrino experiment. Furthermore, the method makes no assumptions specific to neutrinos
and can be straightforwardly extended to the problem of transport of high-energy particles other than neutrinos
(e.g., cosmic-ray nucleons and muons in the atmosphere [14]).

In this paper, we will only consider media that are sufficiently dense to neglect the charged-current induced
regeneration processes. To elucidate this point, let us take a brief look at the main features of the neutrino

2 Since the differential cross sections for the muon radiative processes are energy-independent in the limit of complete screening and the
muon photonuclear cross section grows with energy only logarithmically.
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transport in low-density media.
Under certain conditions, neutrinos may transform, changing energy and/or flavour via processes like νee− →

ν``
− or ν`e

− → νe`
− (` = e, µ, τ), owing to the production and decay of unstable hadrons or, in the

abovementioned massive-neutrino haloes, through reaction chains like νµντ → µ−τ+, τ+ → ντX, etc. In
particular, the neutrino regeneration in hadronic cascades can play a role if the column depth of the medium
exceeds λν(E), while the average density is sufficiently low 3 , namely,

〈ρ〉 . ρ0
h

[
λinel
h (Eh)

45 g/cm2

][
1 PeV
Eh

]
.

Here λinel
h (Eh) is the inelastic scattering length 4 for a hadron h of energy Eh = ξhE at production, ξh is

the average fraction of the incident neutrino energy E carried by the hadron; ρ0
h = 0.8 × 10−8, 6 × 10−8,

1.4 × 10−8 g/cm3 for h = π±, K±, K0
L, respectively, and ρ0

h ∼ 10−2 g/cm3 for h = D±, D0, D0 and Λ±c .
Generally, this mechanism is not-too-effective because ξh is very small. However, it becomes important for flat
neutrino spectra, like ones expected from topological defects.

The charged-current induced reaction chains νµN → µ−X, µ− → νµνee
− and νµN → µ+X, µ+ → νµνee

+

are much more effective if

〈ρ〉 . 6.4× 10−7

[
2.5× 10−6 cm2g−1

bµ(Eµ)

][
1 PeV
Eµ

]
g

cm3
, (1)

where bµ, being the muon fractional energy loss due to radiative and photonuclear interactions, is a slowly
varying function of the muon energy Eµ = ξµE with ξµ ∼ 1. Elementary considerations suggest that under the
condition (1) even very thick layers of matter never become opaque to νµ and νµ.

Let us note that the form of the density distribution and the composition of the medium also affect the
neutrino yields from the decay of hadrons and muons. As a result, the regeneration effect may be very different
for neutrino beams penetrating the same nonuniform medium in different directions.

As it was pointed out recently [16], UHE tau neutrinos and antineutrinos effectively regenerate (losing
energy) even in rather dense media, through the charged-current reaction chain ντN → τX, τ → ντX. Indeed,
the corresponding “critical” density can be roughly estimated as

2× 104

[
10−8 cm2g−1

bτ(Eτ)

][
1 PeV
Eτ

]
g

cm3
(Eτ = ξτE ∼ E).

The Earth is therefore effectively transparent for ντ and ντ at energies up to 1110 EeV. This fact is very profitable
for future experiments with underwater neutrino telescopes (e.g., detecting ντ events from astrophysical neutrino
oscillations at energies & 1 PeV [17]), and especially for UHE neutrino experiments based on the “Space-
Airwatch” method. Indeed, extraterrestrial tau neutrinos will produce detectable upgoing showers from the
whole lower semisphere, whereas showers produced by electron and muon UHE neutrinos can be detected from
outer space only within a narrow solid angle around the horizontal directions.

Mathematically, the consideration of processes that change the neutrino flavour and of neutrino energy loss
through creation and decay of short-lived particles leads to a system of transport equations that explicitly
include the density distribution along the neutrino beam path. The extension of our method to a general
system is not straightforward and demands additional assumptions specific to the task. However, the case
when these contributions may be treated as corrections presents no special problem. Since this case is rather

3 A Thorne1Żytkow object [15] (a neutron star inside a supergiant core) is a good example of such a medium. Regeneration due to
neutrinoproduction and decay of charmed particles may be of some effect for neutrinos propagating through the solar atmosphere.

4 λinel
h = 45 g/cm2 is the typical value for a hydrogen1helium target.
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common (neutrino production in the ν-induced hadronic cascades is a typical example), we briefly describe
the corresponding trivial generalization in Appendix B.

To avoid technical complications, in the main text, we will neglect the (standard and hypothetical) flavour-
changing neutrino interactions 5 and will use the simplest “standard” scenario for neutrino propagation described
by a single transport equation. We will consider sufficiently high energies in order to allow us to neglect the
thermal velocities of the scatterers in the target medium and to simplify to one-dimensional theory. As an
illustration, we will discuss results obtained with some specific models for the initial spectra of muon neutrinos
and antineutrinos propagating through a normal cold medium (Section 3).

2. Method for solution of the neutrino transport equation

Let Fν(E, x) be the differential energy spectrum of neutrinos at a column depth x in a medium defined by

x =

L∫
0

ρ(L′) dL′,

where ρ(L) is the density of the medium at the distance L from the boundary measured along the neutrino beam
path. Then, neglecting the flavour-changing and charged-current induced regeneration processes mentioned in
the introduction, one can derive the one-dimensional transport equation

∂Fν(E, x)
∂x

=
1

λν(E)

[ 1∫
0

Φν(y, E)Fν

(
E

1− y , x
)

dy
1− y − Fν(E, x)

]
, (2)

with the boundary condition Fν(E, 0) = F 0
ν (E). Here, λν(E) is the neutrino interaction length defined by

1
λν(E)

=
∑
T

NTσ
tot
νT(E),

where NT is the number of scatterers T in 1 g of the medium, σtot
νT(E) is the total cross section for the νT

interactions, and the sum is over all scatterer types (T = N, e, . . .). The “regeneration function” Φν(y, E) is
defined by∑

T

NT
dσνT→νX(y, Ey)

dy
= Φν(y, E)

∑
T

NTσ
tot
νT(E),

where dσνT→νX(y, E)/dy is the differential cross section for the inclusive reaction νT → νX (with E the initial
neutrino energy and y the fraction of energy lost) and Ey ≡ E/(1− y).

Let us define the effective absorption length Λν(E, x) by

Fν(E, x) = F 0
ν (E) exp

[
− x

Λν(E, x)

]
. (3)

As is evident from Eq. (2), Λν(E, x) > λν(E) for any finite E and x. Therefore

Λν(E, x) =
λν(E)

1− Zν(E, x)
, (4)

5 As well as the effects of possible neutrino flavour mixing.
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where Zν(E, x) is a positive function (we will call it the Z factor in analogy with the hadronic cascade theory)
which contains the complete information about the neutrino kinetics in matter.

Substituting Eqs. (3) and (4) into Eq. (2) and integrating by parts, it is easy to derive the integral equation
for the Z factor:

Zν(E, x) =
1
x

x∫
0

1∫
0

ην(y, E)Φν(y, E) exp
[
−x′Dν(E, Ey, x′)

]
dx′ dy, (5)

with

Dν(E, Ey, x) =
1− Zν(Ey, x)

λν(Ey)
− 1− Zν(E, x)

λν(E)

and

ην(y, E) =
F 0
ν (Ey)

F 0
ν (E) (1− y)

.

We dwell on Eq. (5). Although nonlinear, it is more suitable for an iteration solution than Eq. (2), considering
the smallness of the Z factor and (what is more important) the model-independent feature of the regeneration
function Φν(y, E), namely, its sharp maximum at y = 0.

In this section, we assume that the initial spectrum F 0
ν (E) is a continuous function decreasing at very high

energies sufficiently fast that 0 6 ην(y, E) < ∞ for any E and 0 6 y 6 1. Actually, the neutrino spectra of
interest for UHE neutrino astrophysics decrease everywhere so fast that 0 6 ην(y, E) < 1 for any E and y > 0.

First we will look at the case of thin absorbers. One readily sees

Zν(E, 0) =

1∫
0

ην(y, E)Φν(y, E) dy ≡ Z 0
ν (E).

Usually the approximation Zν(E, x) = Z 0
ν (E) is utilized in studying the propagation of the muon neutrino

through matter (see, e.g., Refs. [10,3] and references therein). However, at sufficiently high energies this
approximation becomes too rough even for “shallow” (as compared to λν) depths. Indeed, taking into account
the O(x/λν) correction yields

Zν(E, x) ≈ Z 0
ν (E)− x∆1

ν(E)
2λν(E)

,

where

∆1
ν(E) = −λν(E)

[
∂Zν(E, x)

∂x

]
x=0

=

1∫
0

ην(y, E)Φν(y, E)

{
[1− Z 0

ν (Ey)]
λν(E)
λν(Ey)

− [1− Z 0
ν (E)]

}
dy.

Thus, the approximation Zν ≈ Z 0
ν can only be valid for

x

λν(E)
� 2Z 0

ν (E)
|∆1

ν(E)| .

Generally, the function ∆1
ν(E) is not small in comparison with Z 0

ν (E). This can be demonstrated with the
simple model adopted in Ref. [12]. The authors of Ref. [12] assumed that Φν = Φν(y) is an energy-
independent function, λν(E) ∝ E−β and F 0

ν (E) ∝ E−(γ+1) with energy-independent positive β and γ. All
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these assumptions are far from realistic but may have a physical sense at ultra-high energies. For example, owing
to the νN interactions, β is a monotonically decreasing function of E changing from about 1 at E . 1 TeV to
about 0.4 at E & 1 PeV [18] (cf. Ref. [19]); the function Φν(y, E) strongly varies with E at all energies,
but for E & 1 PeV it may be roughly approximated by a scaling function (see Fig. 1 in Section 3) 6 . In this
model, both Z 0

ν and ∆1
ν are energy-independent:

Z 0
ν =

1∫
0

(1− y)γΦν(y) dy, ∆1
ν = (1− Z 0

ν )

1∫
0

(1− y)γ[(1− y)−β − 1]Φν(y) dy.

Evidently, ∆1
ν can be much larger than Z 0

ν for a sufficiently hard initial neutrino spectrum (small γ) 7 .
It is not a hard task to derive the O((x/λν)k) corrections for k = 2, 3, . . ., but as a result we will get an

asymptotic expansion with coefficient functions, ∆kν(E), increasing fast with k. The range of applicability of
this expansion proves to be very limited and decreases fast with increasing energy.

Now, let us consider a way to solve Eq. (5) for any depth and energy. We will use an iteration algorithm.
Let n label the iteration number. Then we define

D(n)
ν (E, Ey, x) =

1− Z (n)
ν (Ey, x)
λν(Ey)

− 1− Z (n)
ν (E, x)
λν(E)

(6)

and

Z (n+1)
ν (E, x) =

1
x

x∫
0

1∫
0

ην(y, E)Φν(y, E) exp[−x′D(n)
ν (E, Ey, x′)] dx′ dy. (7)

Due to the abovementioned sharp maximum of Φν(y, E), the main contribution to the integral over y on
the right-hand side of Eq. (7) comes from the region around the lower limit. But Dν(E, Ey, x) → 0 as
y → 0 and thus the algorithm is robust in respect to choosing the zero approximation. The simplest choice is
Z (0)
ν (E, x) = 0. Therefore

D(0)
ν (E, Ey, x) =

1
λν(Ey)

− 1
λν(E)

≡ Dν(E, Ey). (8)

Formally the algorithm (6)1(8) is applicable for arbitrarily decreasing initial spectra. It is however clear that
the softer the initial spectrum, the better the convergence of the algorithm. In the next section, we show that the
algorithm converges very fast for realistic initial spectra and has no restrictions in depth or energy. Moreover,
even the first approximation,

Z (1)
ν (E, x) =

1∫
0

ην(y, E)Φν(y, E)

[
1− e−xDν(E,Ey)

xDν(E, Ey)

]
dy, (9)

proves to be quite accurate. It has the correct asymptotic behaviour both in energy and depth and it can thus
be used for an analytical or numerical evaluation of the Z factor with a not-too-big error.

6 However, as Fig. 1 suggests, the specific parametrization used in Ref. [12], Φν(y) ∝ (const + y)−1, is too rough even at super-high
energies.

7 In real cases, ∆1
ν(E) is nevertheless finite because any physical spectrum F 0

ν (E) has a cutoff at some finite energy Ecut and therefore
ην(y, E) = 0 at y > 1− E/Ecut.
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Assuming that λν(E) is a decreasing function 8 and therefore Dν(E, Ey) > 0 for y > 0, one can prove that
Z (1)
ν (E, x) 6 Z 0

ν (E) at any E and x > 0, and
Z (1)
ν (E, x)→ 0 as x→∞ at any E.

The latter means that the neutrino regeneration due to the inclusive reactions νT → νX becomes negligible at
sufficiently large depths. This conclusion remains true for the exact solution of Eq. (5), under rather general
assumptions about the behaviour of the initial neutrino spectrum and cross sections.

3. Numerical illustration and discussion

In the following we will only consider muon neutrinos and antineutrinos propagating through a normal
medium. However, the results that follow also hold for electron neutrinos. In this calculation, we will neglect
neutrino scattering off electrons (thus we exclude electron antineutrinos from our consideration) as well as the
neutrino regeneration in the ν-induced cascades. In order to simplify further, we shall deal with an isoscalar
medium neglecting nuclear effects.

To calculate the differential νµN and νµN cross sections, we use the approach of Ref. [18] based on
the renormalization-group-improved parton model and new experimental information about the quark structure
of the nucleon. Various versions of different sets of parton density functions q(x̂, Q2) are now collected in
the large CERN program library PDFLIB [20]; they can be simply accessed by setting a few parameters to
choose a desired version. In this calculation, following Ref. [18], we selected the third version of the CTEQ
collaboration model [21] for the next-to-leading order (NLO) quark distributions in the deep-inelastic scattering
factorization scheme. The Q2 evolution is obtained numerically using the NLO Gribov1Lipatov1Altarelli1Parisi
equations from the initial value Q2

0 = 2.56 GeV2. The CTEQ3 distributions are particularly suitable for our
aims because the numerical evolution is provided for very low Bjorken x̂. Unfortunately, at high energies the
uncertainty resulting from this extrapolation may be rather large. According to the most recent analysis [19], for
neutrino energies up to ∼ 10 PeV, all the standard sets of parton distribution functions yield very similar cross
sections. However, at higher energies, cross sections become sensitive to the behaviour of parton distributions
at x̂� 10−4, where there are no direct experimental constraints. Reasoning from the most extreme variations,
the authors conclude that at E = 100 EeV the uncertainty reaches a factor of 2±1.

It was calculated in Ref. [22] that the QED radiative corrections (in leading logarithmic approximation)
essentially modify the UHE single-differential cross section dσνN→µX/dy, especially at low y, while they are
almost negligible for the total cross section. In the present calculation, we neglect the radiative corrections,
considering that the mentioned uncertainty in the parton density functions at very low x̂ is the dominant source
of uncertainty in the differential cross sections. It should be noted here that possible uncertainties in the NC
cross section, dσνN→νX/dy, at low y can affect the Z factors, but they are essentially cancelled in the effective
absorption lengths, Λν(E, x).

The total cross sections for CC and NC inelastic scattering of muon neutrinos and antineutrinos off an
isoscalar nucleon are shown in Fig. 1 as the solid (νµ) and dashed (νµ) curves. Fig. 2 shows the regeneration
functions Φνµ(y, E) (solid curves) and Φνµ(y, E) (dashed curves) versus y for several values of E (103 to
1012 GeV).

At all energies, our calculation for the cross sections agrees with the result of Ref. [18] within a few-percent
accuracy; the insignificant difference near the resonance region (< 4%) is due mainly to differences in the
adopted values for the electroweak parameters (W/Z boson masses, t quark mass, Weinberg angle, etc.) 9 and,
at the highest energies, due to the top sea contribution neglected in Ref. [18]. As one can see from the figures,
the νµ and νµ scatterings become indistinguishable for E & 1 PeV.

8 For a normal medium, this is true for all neutrino flavours except νe (see Ref. [18]).
9 In our calculation, all these parameters were updated according to the current PDG data [23].
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Fig. 1. Total charged and neutral current νµN and νµN cross sections versus energy.

Fig. 2. Regeneration functions Φνµ(y, E) and Φνµ(y, E) versus y for E = 10k GeV (k = 3, 4, . . . , 12 from top to bottom).

We use the following model for the initial neutrino spectrum:

F 0
ν (E) = K

(
E0

E

)γ+1(
1 +

E

E0

)−α
φ

(
E

Ecut

)
, (10)

where K, γ, α, E0, and Ecut are parameters and φ(t) is a function equal to 0 at t > 1 and 1 at t� 1. Varying
the parameters in Eq. (10), we can approximate many models for the neutrino fluxes expected from the known
astrophysical sources. Technically, the function φ(t) serves to avoid an extrapolation of the cross sections
to the extremely-high energy region for which our knowledge of the parton density functions is limited. For
realistic values of the parameters γ, α, and E0, the explicit form of φ(t) is of no importance as long as one is
interested in the energy range E � Ecut. In fact, φ(t) may be treated as a real physical cutoff of the spectrum
determined by the energetics of a neutrino source or by neutrino interactions with cosmic background. In the
present calculations, we adopt (without serious physics arguments) φ(t) = 1/[1 + tan(πt/2)] (t < 1) and
Ecut = 3× 1010 GeV.

Fig. 3 shows the energy dependence of the Z factors, Zνµ(E, x) (solid curves) and Zνµ(E, x) (dashed
curves) for various depths, from x = 0 to x = x⊕ (where x⊕ ≈ 1.1 × 1010 g/cm2 is the column depth of the
Earth along the diameter), for the initial spectra (10) calculated with γ = 0.5, α = 1 (a), γ = 1, α = 0.5 (b),
γ = 1.5, α = 0.5 (c), and γ = 2, α = 1 (d). In all cases we used E0 = 1 PeV.

The calculations were made in the fourth order of the iteration procedure described in Section 2. For all spectra
under discussion, for 10 GeV 6 E 6 1010 GeV and 0 6 x 6 x⊕, the maximum difference between Z (1)

ν (E, x)
and Z (2)

ν (E, x) is about 4%; the value |Z (3)
ν /Z (2)

ν − 1| is less than 2× 10−3, and |Z (4)
ν /Z (3)

ν − 1| is less than
the precision of the numerical integration and interpolation (about 10−5) adopted in our calculations. After
tests with many models for the initial spectrum (including atmospheric neutrino spectra from Ref. [24]), we
conclude that the convergence of the algorithm is very good and that even the first approximation, Z (1)

ν (E, x),
has an accuracy which is quite sufficient for the majority of applications of the theory.

As is clear from Fig. 3, the shape of the Z factors strongly depends on the initial spectrum. This is a positive
fact for neutrino astronomy since, at least in principle, it enables one to reconstruct the initial neutrino spectrum
from the measured energy spectrum and the angular distribution of neutrino induced muon events in a neutrino
telescope.



V.A. Naumov, L. Perrone / Astroparticle Physics 10 (1999) 2391252 247

Fig. 3. Z factors, Zνµ(E, x) and Zνµ(E, x) versus energy for the initial spectra (10), calculated with four different sets of γ and α and
with E0 = 1 PeV for depths x = x⊕/k (k = 1, 2, 3, 5, 10, 20, 50 from bottom to top) and x = 0 (the largest Z factors).

At comparatively low energies (except for unrealistically hard spectra like the one used in Fig. 3a), the
Z factors for antineutrinos exceed those for neutrinos. Considering the inequality λνµ(E) > λνµ(E), one can
conclude that

Λνµ(E, x) > Λνµ(E, x)

for any depth. In the multi-PeV energy range and above, the Z factors (and effective absorption lengths)
are identical for νµ and νµ. The difference between the shapes of Zνµ(E, x) and Zνµ(E, x) is almost depth-
independent and becomes more important for steep initial spectra. This behaviour may be understood from an
analysis of the shapes of the total cross sections and regeneration functions for νµ and νµ (Figs. 1 and 2).

At any fixed energy, the Z factors monotonically decrease with increasing depth and the inequality Zν(E, x) <
Z 0
ν (E) takes place for any x > 0. This effect leads to a significant decrease of the neutrino event rates in

comparison with those estimated in the “standard” approximation Zν ≈ Z 0
ν ; the latter only works at low
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Fig. 4. Neutrino penetration coefficient in the Earth for the quasi-power-law initial spectrum with γ = 0.7 as a function of E at fixed ϑ
(0◦ to 90◦ from bottom to top with steps of 10◦).

Fig. 5. Neutrino penetration coefficient in the Earth for the quasi-power-law initial spectrum with γ = 0.7 as a function of ϑ for E = 10k GeV
(k = 3, 4, . . . , 7 from top to bottom).

energies, when the shadow effect is by itself small (that is when the medium is almost transparent for
neutrinos). Although these conclusions were derived from particular models for the initial neutrino spectrum,
cross sections, and medium, they are actually highly general and model-independent.

In Figs. 4 and 5, we present the penetration coefficient, exp[−x/Λν(E, x)], in the Earth for muon neutrinos
with the initial spectrum (10) calculated with γ = 0.7 and α = 0 (“quasi-power-law” spectrum). The results
are presented as a function of E for several nadir angles (ϑ) (Fig. 4) and as a function of ϑ for several values
of E (Fig. 5).

To evaluate the depth x as a function of ϑ, we use the density profile of the Earth, ρ(L), given from the
“Preliminary Reference Earth Model” (see Ref. [18]). The kinks in Fig. 5 are due to the layered structure of
the Earth.
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Appendix A. Monochromatic initial spectrum

Let us consider the initial “spectrum” of the form δ(E − E0) with the parameter E0. In this appendix, we
will show how this monochromatic spectrum transforms at depth x in a medium. Let us denote the transformed
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spectrum by Gν(E0;E, x). This function must satisfy Eq. (2) and simple considerations suggest the following
ansatz:

Gν(E0;E, x) =

[
δ(E − E0) +

θ(E0 − E)
E

pν(E0;E, x)

]
e−x/λν(E0), (A.1)

where the term with δ function describes absorption of initial (“parent”) neutrinos of energy E0 and the next
term 1 the creation and propagation of secondary neutrinos with energy E < E0. Substituting Eq. (A.1) into
Eq. (2) yields

∂pν(E0;E, x)
∂x

=
1

λν(E)

[ y0∫
0

Φν(y, E)pν(E0;Ey, x) dy +Ων(E, E0)

]
+Dν(E, E0)pν(E0;E, x),

pν(E0;E, 0) = 0, (A.2)

where Ων(E, E0) = (1− y0)Φν(y0, E), y0 ≡ 1− E/E0 < 1, and Dν(E, E0) is defined by Eq. (8).
Let us seek the solution to Eq. (A.2) in the form

pν(E0;E, x) = Ων(E, E0)

x∫
0

exp

[ x∫
x′

dx′′

Lν(E0;E, x′′)

]
dx′

λν(E)
, (A.3)

1
Lν(E0;E, x)

=
1

λν(E0)
− 1−Zν(E0;E, x)

λν(E)
, (A.4)

with Zν(E0;E, x) an unknown positive function. After direct substitution of Eqs. (A.3) and (A.4) into
Eq. (A.2) we have

Zν(E0;E, x)pν(E0;E, x) =

y0∫
0

Φν(y, E)pν(E0;Ey, x) dy. (A.5)

Clearly, Zν(E0;E, x)→ 0 and pν(E0;E, x)→ xΦν(0, E0)/λν(E0) as E → E0 for any x.
The new “Z factor”, Zν(E0;E, x), can be found from Eqs. (A.3)1(A.5) by an iteration algorithm similar

to the algorithm described in Section 2. Putting Zν = 0 as a zero approximation we have

p(0)
ν (E0;E, x) =

Ων(E, E0)
λν(E)Dν(E, E0)

[exDν(E,E0) − 1] (A.6)

and subsequently

Z(1)
ν (E0;E, x) =

y0∫
0

Φν(y, E)

[
p(0)
ν (E0;Ey, x)

p(0)
ν (E0;E, x)

]
dy. (A.7)

The next steps of the algorithm are quite obvious; so there is no need to write out the corresponding cumbersome
formulas here.

Let us briefly sketch the leading approximations for pν and Zν , since they contain the main features of the
exact solution. As is seen from Eq. (A.6), for every E < E0 there is a depth,

x∗(E0, E) =
1

Dν(E, E0)
ln
λν(E)
λν(E0)

,

at which the flux of neutrinos of energy E reaches the maximum. Function x∗(E0, E) increases when E
decreases and tends to the minimum, λν(E0), as E → E0. At any finite depth, secondary neutrinos “remember”
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about their “parents” (the E0 dependence does not disappear with increasing depth). Due to the nontrivial
shape of the regeneration function Φν (see Fig. 2), the spectrum of secondary neutrinos is rather complex and
transforms drastically with depth.

For x� λ(E0), the function p(0)
ν behaves as xΩν(E, E0)/λν(E). Therefore

Z(1)
ν (E0;E, 0) =

y0∫
0

Φν(y, E)

[
Ων(Ey, E0) λν(E)
Ων(E, E0) λν(Ey)

]
dy.

Taking into account that λν(E) > λν(E0) for E < E0 (see footnote 8), we get the asymptotic behaviour of
Z(1)
ν for x→∞:

Z(1)
ν (E0;E, x) ∼

y0∫
0

Φν(y, E)

[
Ων(Ey, E0)
Ων(E, E0)

][
λν(E)− λν(E0)
λν(Ey)− λν(E0)

]
exp[−xDν(E, Ey)] dy→ 0.

With the function pν(E0;E, x) in hand, we can obtain the solution to the transport Eq. (2) for any initial
spectrum F 0

ν (E). Indeed, multiplying Eq. (A.1) by F 0
ν (E0) and integrating over E0, we have

Fν(E, x) =

∞∫
0

F 0
ν (E0)Gν(E0;E, x) dE0

= F 0
ν (E) e−x/λν(E) +

∞∫
E

F 0
ν (E0)pν(E0;E, x) e−x/λν(E0) dE0

E
. (A.8)

The first term on the right side of Eq. (A.8) describes neutrino absorption and the second one the neutrino
regeneration due to energy loss through the reactions νT → νX. Eq. (A.8) is in fact equivalent to Eq. (3)
but, when the function pν(E0;E, x) is known, Eq. (A.8) becomes much more convenient for calculations
because pν is independent from the initial spectrum 10 . Due to the mentioned equivalence, we can get a useful
representation for the Z factor in terms of the function pν :

Zν(E, x) =
λν(E)
x

ln

[
1 +

1∫
0

ην(y, E)pν(Ey;E, x) e−xDν(E,Ey) dy
1− y

]
. (A.9)

It should be noted that the Z factor calculated in the nth approximation using the algorithm (6)1(7) agrees
only numerically rather than analytically with that calculated from Eq. (A.9), employing the iteration algorithm
for pν . In particular, substituting pν = p(0)

ν into Eq. (A.9) yields

Zν(E, x) =
λν(E)
x

ln

[
1 +

xZ (1)
ν (E, x)
λν(E)

]
≡ Z (I)

ν (E, x),

where Z (1)
ν (E, x) is defined by Eq. (9). Thus

Z (I)
ν (E, x) = Z (1)

ν (E, x)

[
1− xZ (1)

ν (E, x)
2λν(E)

+ . . .

]
6 Z (1)

ν (E, x).

10 However, Eq. (A.8) has one evident technical drawback. To use it, one must calculate 3-dimensional arrays that are hard to interpolate
due to the very strong dependence of pν and Zν from their arguments. From this point of view, the algorithm described in Section 2 is of
course simpler.
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However, the Z (I)
ν (E, x) can be approximated by Z (1)

ν (E, x) with a very good accuracy because xZ (1)
ν (E, x)/

λν(E)� 1 in most cases of interest for neutrino astrophysics.

Appendix B. Neutrino transport equation with a source function

Here, we briefly show how to take into account contributions from production of neutrinos through reactions
ν`T → ν`′X (` 3 `′) or through the reaction chains mentioned in the introduction in the case when these
contributions may be treated as corrections to the principal solution described in Section 2 and Appendix A.
Clearly, the problem reduces to the transport equation (2) with a source function Sν(E, x) on the right side.
In line with our general approach, we will seek the solution to this equation in the following form 11 :

FS(E, x) =

x∫
0

Sν(E, x′) exp

[
−

x∫
x′

1−Zν(E, x′′)
λν(E)

dx′′
]

dx′, (B.1)

with Zν(E, x) a positive function satisfying the equation

Zν(E, x) =

1∫
0

ηS(y, E; x)Φν(y, E) dy, (B.2)

where we introduced

ηS(y, E; x) =
FS(Ey, x)

FS(E, x) (1− y)
.

It is easy to verify that FS(E, x) ∼ xSν(E, 0) as x→ 0. Therefore,

ηS(y, E; 0) =
Sν(Ey, 0)

Sν(E, 0) (1− y)
,

and this function is assumed to be finite for any E and y.
The algorithm for the solution to Eqs. (B.1), (B.2) is quite obvious: putting Z(0)

ν = 0 yields

F (0)
S (E, x) =

x∫
0

Sν(E, x− x′) e−x
′/λν(E) dx′, Z(1)

ν (E, x) =

1∫
0

η(0)
S (y, E; x)Φν(y, E) dy,

etc. The formal question about the finiteness of the involved integrals over y is closely related to the very
difficult problem of the asymptotic behaviour for the νN inclusive and total cross sections as E → ∞. This
problem is beyond the scope of this study, but we can avoid it introducing a cutoff y0 = 1 − E/E0 (with
E0 � E) as the upper limit of the integrals. The reason for such a cutoff is in the fact that any physical source
function, Sν(E, x), must exponentially vanish as E →∞ (cf. footnote 7).
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