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An equivalence of total angular momentum operator of charge–monopole system to the
momentum operator of a symmetrical quantum top is observed. This explicitly shows
the string independence of Dirac’s quantization condition leading to disappearance of
Schwinger’s string and reveals some properties of diatomic molecule for this system.
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1. Introduction

It is well known1,2 that the one-particle wave function of a charge scattered on

monopole’s field decomposes as a sum of rotation eigenfunctions of symmetrical

quantum top. Here some physical reasons of this will be elucidated.

Let us recall the main results about the problem under consideration (see Refs. 3,

4 and references therein). It is well known that magnetic field’s “hedgehog” Bm(x)

of an infinitely heavy magnetic monopole placed at the origin O and corresponded

to residual (Abelian) U(1) gauge group has a source at the origin O viewed from

classical point either as the origin of a semi-infinite infinitely thin solenoid (bar

magnet string) A±
u
(x) along the direction of vector u (Dirac),5 or as the origin of

two such symmetric strings Au(x) (Schwinger)
6:

A±
u
(x) =

g

r

(u× x)

((u · x)± r)
, Au(x) =

1

2
(A+

u
(x) +A−

u
(x)) , (1)

Bm(x) = (∇x ×Au(x))− hu(x) = g
x

r3
, r = |x| , (2)

hu(x) = −2πgu
(u · x)
r

δ2u(x⊥) , x⊥ = x− u(u · x) , (3)
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for which: (∇x ·A±
u (x)) = (∇x ·Au(x)) = 0 , (4)

(∇x ·Bm(x)) = −(∇x · h(x)) = 4πgδ3(x) , (5)

where hu(x) is the magnetic field inside the string, defined by two-dimensional

δ2u(x⊥)-function. The same magnetic field (2) results3 also from A±
u (x) with cor-

responding h±
u (x).

In Cartesian basis ei placed at the origin O for a charge position vector x =

rn = ρη(ρ)+ze3 one has the rotating vectors of spherical and polar bases η(j)(β, α)

as functions of the corresponding angles α, β:

n = η(r) = e1 sinβ cosα+ e2 sinβ sinα+ e3 cosβ , (6)

η(β) = e1 cosβ cosα+ e2 cosβ sinα− e3 sinβ , (7)

η(α) = −e1 sinα+ e2 cosα , (8)

η(ρ) = e1 cosα+ e2 sinα = η(β) cosβ + n sinβ . (9)

Thus, the gauge u = e3 = ez, with (u ·n) = cosβ, (u×n) = η(α) sinβ, recasts the

different fields of Eq. (1) to the following:

A+
u (x) = η(α)

g

r
tan

β

2
, A−

u (x) = −η(α)
g

r
cot

β

2
, (10)

Au(x) = −η(α)
g

r
cotβ . (11)

Here the first and second ones are for the semi-infinite (Dirac) strings along −ez

and ez respectively, whereas the third one is for the infinite (Schwinger) string,

composed symmetrically by the two previous ones.3

Various expressions (1) for Au(x) are differed by the gauge transformation con-

taining a multivalued gauge function4 Λ(x). For example for transfer (rotation)

from the semi-infinite string along −ez of Eq. (10) to the one along the ez , this

transformation3,4 is a gauge one only “almost everywhere”, out of the semi-infinite

half plane, y = 0, x > 0, bounded by infinite z-axis. The potentials (10) lead to3:

e

c~
(A+

u
(x)−A−

u
(x)) = ∇xΛ(x) =

2Q

~

η(α)

r sinβ
, (12)

for: ∇x = n
∂

∂r
+

η(β)

r

∂

∂β
+

η(α)

r sinβ

∂

∂α
, Λ(x) =

2Q

~
α , (13)

with: Q =
eg

c
, and give: π+ = eiΛ(x)

π−e
−iΛ(x) , (14)

for: π± = p− e

c
A±

u
(x) , p = −i~∇x . (15)
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Single-valuedness of eiΛ(x) for α → α+2π imposes Dirac’s quantization conditions5:

eiΛ(x) = eiNα , −2Q = ~N , N = 0,±1,±2, . . . . (16)

Schwinger’s symmetrical string of Eq. (11) seems believable to lead to a more re-

strictive condition6 with N 7→ 2N only. However, this string possess another inter-

pretation without such a restriction, as it will be shown below.

On the other hand, a common classical electromagnetic field (EMF) composing

by the magnetic field Bm(y) from the monopole at the origin O and by the electric

field Ee(y) from the scattered point charge at the position x, brings into their

system an additional irremovable angular momentum M = −Qn, associated with

Poynting momentum density vector.1,3 In spite of the impossibility to assign this

angular momentum to any one of these particles, it has inspired Goldhaber1 and

others2,3 to interpret the value −Q quantized by Eq. (16) as a conserving projection

onto the vector n of some additional quantum spin S satisfying the relations:

(M · n) = −Q↔ (S · n) , (S · n) 7→ ~µ , 2µ = N , (17)

[Si, Sj ] = i~ǫijkSk , [S, xj ] = [S, pj] = 0 , (18)

[(S · n),πs] = 0 , where for πs:
e

c
As(x) = − (S× x)

r2
, (19)

with:
e

c
Bm(x) =

1

i~
(π × π) =

e

c
(∇x ×As(x)) (20)

− i

~

(

e

c
As(x)×

e

c
As(x)

)

= −(S · n) x
r3
, (21)

— instead of the string expression (2). Thus, he has avoided the use of any strings

of Eq. (1). The spin quantization condition (17) is equivalent to (16) making these

strings invisible. However, instead of the string potentials of Eq. (1), he has arrived

at the non-Abelian spin-potential3,4 As(x) given by Eq. (19), which also obeys

Eq. (4) but is connected with the string ones A±
u (x) by a spin rotation that is

meaningful only on the eigenstates of the third spin-component2,3 S3. A single spin

is enough1 to obtain Dirac’s strings A±
u (x) only. To reproduce Schwinger’s string

Au(x) of Eq. (11), it is necessary to take the operator S as a sum of two mutually

commutative spin operators,3 S = Sa +Sb. The final result is reached by using the

unitary transformation:3 U = U−1
a (α, β,−α)U−1

b (α, β−π,−α) (cf. Eq. (53) below),
rotated the projections of these two spins on the vector n into their projections on

the vectors ±ez respectively: (Sa,b ·n) 7→ ±(Sa,b · e3) = ±(Sa,b)3, and furnished by

eigenvalue condition (Sa−Sb)
′
3 = −Q. A crown of this cumbersome construction2,3

is an impression that for Ls ≡ (x× πs) and with the first substitution of Eq. (17)

the total angular momentum operator Js takes a simple — “one-particle” form1



January 15, 2010 16:26 WSPC/INSTRUCTION FILE S0217732310032342

94 S. E. Korenblit & K. Lee

with the usual orbital momentum L = (x × p) and the spin S:

Js = Ls −Qn ↔ Ls + (S · n)n = L+ S ≡ J , (22)

and that the above rotation converts it to the standard one3:

UπsU
−1 = π = p+

η(α)

r
sinβ

(

S′
a3

1 + cosβ
+

S′
b3

1− cosβ

)

, (23)

UJU−1 = J = (x× π) + n(Sa − Sb)
′
3 . (24)

Here S′
a3 = 0 for the one of Dirac’s string whereas for Schwinger’s one (Sa+Sb)

′
3 = 0.

Since (L · n) = (L · n) = 0, one has (S · n) = (J · n), what also helps to convert

the Hamiltonian operator 2mHs = π
2
s into the usual form1:

Uπ2
sU

−1 = π
2 = 2mH = p̃2r +

L2

r2
. (25)

Note that one of the summands in Eq. (1) always disappears as n → ±u for the

charge leaving “visible” only singular contribution of the other one, which is equal to

1/2 of Dirac’s string as a “half” of Schwinger’s string. This qualitatively makes very

smooth a physical difference between two types of these strings, because by using

a gauge-like transformation (12) an arbitrary position of (Schwinger’s) string can

always be directed almost along the vector n of incident charge without violating

“Dirac’s veto”.3

The aim of the present letter is to show that the above one-particle interpre-

tation of the total angular momentum operator can be replaced naturally by its

interpretation for some extended object leading to disappearance of Schwinger’s

string.

2. The Algebra of Operators in the Presence of Monopole

Let us consider the algebra of operators for the motion of a charge in the monopole

fields (1) with the Hamiltonian (25) and local commutation relations1–4:

[xi, xj ] = 0 , [xi, πj ] = i~δij , [πi, πj ] = i
e~

c
ǫijk(Bm)k , (26)

1

2
ǫijk[πi, [πj , πk]] =

e~2

c
(∇x ·Bm(x)) = 4π~2Qδ3(x) . (27)

In terms of the operator L = (x × π), the equation of motion takes its classical

form1:

2mi~π̇ = [π,π2] = i
e~

c
((π ×Bm)− (Bm × π)) =

2

i
~
Q

r3
L , (28)

2mi~L̇ = [L,π2] = Q2mi~ṅ = Q[n,π2] . (29)
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The substitution −Q ↔ (J · n) instead of the first one of Eq. (17) for the angular

momentum operator J = L − Qn ↔ L + (J · n)n instead of the J in Eq. (22)

gives1–4,7:

2mi~J̇ = [J ,π2] = 0 , [(J · n),π] = 0 , [(J · n),n] = 0 , (30)

[Ji, xj ] = i~ǫijkxk , [Ji, πj ] = i~ǫijkπk , [Ji, Jj ] = i~ǫijkJk . (31)

Hence J is a conserving total angular momentum operator for the extended system:

“charge + monopole + common EMF”, though the last two formulas in Eq. (31)

are valid, strictly speaking, only outside of the string hu(x) producing an additional

contribution3 from Eq. (3). The first relation of Eq. (26) together with the first and

the last relations of Eq. (31) form the algebra of Euclidean group E3 having (J ·n) as
Casimir operator,7 what leads to quantization condition (16) without any reference

to explicit form of the potential A±
u
(x). At last Jackiw8 has showed recently that

Jacobi commutator (27) provides the condition (16) under direct construction of

extended object such as tetrahedron.

Hurst9 was probably the first who used the differential form instead of the

spin one (17) for the projection of the total angular momentum operator (J · n)
in the case of Dirac’s potentials (10). Remaining, however, in the framework of

the single-particle interpretation of operator J 2 containing an additional extension

parameter µ (cf. after Eq. (39) below) and imposing the (essential) self-adjointness

condition for this operator with Dirac’s or Schwinger’s string, he obtained the charge

quantization rules (16) from the boundary conditions for its eigenfunctions that in

fact make these strings invisible.

Let us examine the operator J in more detail. Though its initial expression is

not a sum of angular momentum operators

J = L−Qn =

(

x×
(

p− e

c
Au(x)

))

−Qn , (32)

the use of the basis vectors of spherical and polar coordinate systems defined in

Eqs. (6)–(9) and Schwinger’s type of the vector potential of Eq. (11) recasts J into

the following:

J = i~

[

η(β)

sinβ

∂

∂α
− η(α)

∂

∂β

]

− η(ρ)

sinβ
Q . (33)

Note that the basis vectors used here are not fully mutually orthogonal. The main

observation of this work, surprisingly still not explicitly mentioned in the litera-

ture (see Refs. 3, 4 and references therein) is that Cartesian components of this

expression with Lipkin’s7 and Hurst’s9 substitutions both together:

−Q↔ (J · n) ↔ −i~ ∂

∂γ
, (34)

exactly coincide, as it may be easily seen, with the standard expressions for Carte-

sian components of a total angular momentum operator of rotating rigid body —

a top, in terms of its Euler angles α, β, γ as dynamical variables10,11:
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J1(α, β, γ) = i~

[

cotβ cosα
∂

∂α
+ sinα

∂

∂β
− cosα

sinβ

∂

∂γ

]

, (35)

J2(α, β, γ) = i~

[

cotβ sinα
∂

∂α
− cosα

∂

∂β
− sinα

sinβ

∂

∂γ

]

, (36)

J3(α, β, γ) = −i~ ∂

∂α
, (37)

what is in exact correspondence with the meaning of the value of (J · n) as a pro-

jection of the total angular momentum operator onto the rotating axis n. Keeping

in mind the Eq. (33), may be the most explicit demonstration would be:

J (α, β, γ) = i~

[

η(β)

sinβ

∂

∂α
− η(α)

∂

∂β
− η(ρ)

sinβ

∂

∂γ

]

. (38)

The expressions (35)–(38) have nothing to do with singularities of Schwinger’s string

(11), leading to the usual operator of total angular momentum square10: J 2 =

J2
1 + J2

2 + J2
3 , or:

J
2(α, β, γ) = (i~)2

[

1

sinβ

∂

∂β

(

sinβ
∂

∂β

)

+
1

sin2 β

(

∂2

∂α2
− 2 cosβ

∂

∂α

∂

∂γ
+

∂2

∂γ2

)

]

. (39)

This expression was previously used for a charge–monopole system2–4,9 only with

fixed eigenvalues of the operators J3 7→ ~m, and/or (J · n) 7→ ~µ. For the last

case Hurst9 gives also the expressions for the Cartesian components of Jk (32) with

Dirac’s string (10) that however have nothing to do with Eq. (33) and the top

angular momentum (35)–(38).

In the Cartesian basis of fixed coordinate system ei the basis of the rotating

coordinate system f (j) tightly associating with the rotating top for i, j = 1, 2, 3, has

the following form10:

f (j)(αβγ) =

3
∑

i=1

Rij(αβγ)ei , (ei · ej) = (f (i) · f (j)) = δij . (40)

Conversion to this rotating system is realized by rotation matrix R̂(αβγ) with

matrices elements Rij = (ei · f (j)) given in Ref. 10 depending on the Euler angles:

0 ≤ α < 2π, 0 ≤ β ≤ π, 0 ≤ γ < 2π,

R̂(αβγ) =





















cosα cosβ cos γ −cosα cosβ sin γ cosα sinβ

−sinα sin γ −sinα cos γ

sinα cosβ cos γ −sinα cosβ sin γ sinα sinβ

+cosα sin γ +cosα cos γ

−sinβ cos γ sinβ sin γ cosβ





















. (41)
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Because for l = 1, 2, 3, the vectors f (l) are vector operators with respect to rotation

generated by operator J (38), the components of this differential operator in the

rotating coordinate system are scalars J(l) ≡ P(l), defined as10:

P(l) = (f (l) · J ) =

3
∑

i=1

RilJi , where [Ji, Ril] = 0 , (42)

[Ji, Rjl] = [Ji, (f (l))j ] = i~ǫijk(f (l))k = i~ǫijkRkl , (43)

P(1) = L(1) = i~

[

−cotβ cos γ
∂

∂γ
− sin γ

∂

∂β
+

cos γ

sinβ

∂

∂α

]

, (44)

P(2) = L(2) = i~

[

cotβ sin γ
∂

∂γ
− cos γ

∂

∂β
− sin γ

sinβ

∂

∂α

]

, (45)

P(3) = (J · n) = −i~ ∂

∂γ
, L(3) = (n ·L) = 0 , (46)

— since the vector f (3) ≡ n(β, α) for all γ. These components obey the relations10

(* — means complex conjugation):

[P(i),P(j)] = −i~ǫijkP(k) , [Ji,P(j)] = 0 , (47)

P(k)(α, β, γ) = J∗
k (−γ,−β,−α) . (48)

The operator (39) of total angular momentum square coincides for both coordinate

systems.10 Therefore, the angle-dependent part L2/r2 of the Hamiltonian (25) in

fact represents the Hamiltonian of symmetric top10,11 with an infinite moment of

inertia about the third principal axis of inertia, f (3) = n. The projection P(3) onto

this axis of the total angular momentum J then remains to be a constant −Q and

with P2 = J
2:

L
2 = J

2 −Q2 ↔ P
2 − P2

(3) = P2
(1) + P2

(2) , (49)

which can be considered as the main result of this work.

3. The Wave Function and the Scattering Amplitude

The above observations reveal a deep similarity between the rotation wave func-

tions of the usual spinless diatomic molecule with taking into account the total

orbital momentum of its electronic shell,11 and the rotation wave functions of the

effective “molecule” composed by the electric charge and magnetic monopole (or

by the two dyons) with taking into account the angular momentum of their com-

mon EMF. Thus for the states with the fixed total angular momentum for both

these “molecules”, J 2 7→ ~
2j(j + 1), the states of the usual molecule with conserv-

ing projection of its averaged electronic shell orbital momentum onto the rotating

molecule’s axis n: (L̄e · n) = (J · n) 7→ ~λ, with the obvious condition11 j ≥ |λ|,
are in direct correspondence with the states of the charge–monopole “molecule”
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with a certain conserved projection of the angular momentum of their common

EMF3,4 onto the rotating “molecule’s” axis n: (S · n) = (J · n) 7→ ~µ = −Q,

what eventually gives the one and the same conditions for the one and the same

eigenfunctions of symmetric quantum top for the “molecules” of both types, with

the replacement2,3,11: λ ↔ µ. For matrix representation Jk of angular momentum

operators, with Jk 7→ ~Jk, these well-known Wigner’s D-functions10 appear from:

[Ji, Jj ] = iǫijkJk , U(α, β, γ) = e−iαJ3e−iβJ2e−iγJ3 , (50)

1

ij

√

8π2

2j + 1
〈αβγ|jm〉µ = 〈jµ|U−1(α, β, γ)|jm〉 (51)

= D(j)∗
m,µ(α, β, γ) = eiµγdjm,µ(cos β)e

imα , (52)

as the common eigenfunctions of the operators J 2, J3 and (J ·n(β, α)) = P(3) with

the eigenvalues ~2j(j+1), ~m and ~µ respectively, for which −j ≤ m, µ ≤ j. When

γ = −α, these eigenfunctions are reduced to10,11:

U−1(α, β,−α) = e−iαJ3eiβJ2eiαJ3 = exp{iβ(J · η(α))} , (53)

1

ij

√

4π

2j + 1
〈n(β, α)|jm〉µ = 〈jµ|U−1(α, β,−α)|jm〉 , (54)

giving: 〈αβγ|jm〉µ =
eiµ(γ+α)

√
2π

〈n(β, α)|jm〉µ . (55)

Thus, for the gauge u = ez Schwinger’s string is “dissolved” in the total angular

momentum operator for “charge + monopole + common EMF” if the latter is con-

sidered as a total angular momentum operator of some effective extended quantum

object with the properties of the symmetric top. So, the above eigenvalues j,m, µ of

the mutually commutative (differential) operators J 2, J3 and P(3), can be integer

as well as half integer. Indeed, unlike the usual diatomic molecules, the additional

common EMF of charge and monopole should not induce here only purely inte-

ger orbital momentum, whereas the disappearance of the string makes irrelevant

Schwinger’s narrowing6 onto the even N . Note that the notion of extended (im-

penetrable rigid) body in quantum mechanics admits both integer and half integer

values of its angular momentum.10

When the charge falls along the z axis from z = −∞, one has n = −ez and for

the eigenvalue ~m of the operator J3 = (J · ez) 7→ −(J · n) obtains2,3 m = −µ.
Thus, the exact scattering wave function ψ

(+)
k

(x) and the full scattering amplitude

F(k2, cosβ) are connected by the relation1,3:

ψ
(+)
k

(x) = e−iπµ

∞
∑

j=|µ|

(2j + 1)eiπje−iπℓ/2 jℓ(kr)D
(j)∗
−µ,µ(α, β,−α) , (56)
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ψ
(+)
k

(x)−−−−→
r→∞

e−2iµα

[

ei(k·x) + F(k2, cosβ)
eikr

r

]

, (57)

2ikF(k2, cosβ) = e−iπµ

∞
∑

j=|µ|

(2j + 1)e−iπ(ℓ−j)dj−µ,µ(cosβ) , (58)

what follows3 from asymptotic behavior of the Bessel function jℓ(kr):

jℓ(kr)−−−−→
r→∞

1

kr
sin

(

kr − πℓ

2

)

, ℓ+
1

2
=

[

(

j +
1

2

)2

− µ2

]1/2

. (59)

When in Eq. (56) the eigenfunctions of a symmetric top of Eq. (52) is used, the

multiplier e−2iµα that deforms also the falling plane wave2,3 in expression (57), is

replaced by eiµ(γ−α). However, for the fixed µ the dependence on angle γ coming

here from Eq. (55) gives only a common phase as well as for the case of the usual

diatomic molecule.11 Therefore, this multiplier has no physical meaning and can

not change the one-particle interpretation of the scattering wave function (56) and

scattering amplitude (58), because the vector n in Eq. (6) depends on Euler angles

α, β only, where β becomes a scattering angle.

4. Conclusion

The inability to assign irremovable additional angular momentum (17) of com-

mon charge–monopole EMF to any of these particles indicates incompleteness of

single-particle interpretation9 of the rotation symmetry for this system and lack

of single-particle interpretation for the total angular momentum operator and its

eigenfunctions. We showed that Schwinger’s symmetric vector potential6 (1), (11)

directly leads to the more natural interpretation of the rotation symmetry for this

system, as a symmetry of extended object with the properties of a symmetric quan-

tum top with the infinite moment of inertia about the third principal axis of inertia.

The whole system behaves with respect to rotations similarly to diatomic molecule

with taking into account the total angular momentum of its electronic shell. Ad-

jacent results with different interpretation via “spinning-isospinning top” were ob-

tained in Ref. 12 starting from purely classical consideration of the charge-monopole

system.
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