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In this paper, we will analyze the short distance corrections to low energy scattering. They are produced 
because of an intrinsic extended structure of the background geometry of spacetime. It will be observed 
that the deformation produced by a minimal measurable length can have low energy consequences, if 
this extended structure occurs at a scale much larger than the Planck scale. We explicitly calculate short 
distance corrections to the Green function of the deformed Lippmann-Schwinger equation, and to the 
conserved currents for these processes. We then use them to analyze the pre-asymptotic corrections to 
the differential scattering flux at finite macroscopically small distances.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
We do not have a complete theory of quantum gravity, how-
ever, there are various approaches to quantum gravity. It is ex-
pected from various different approaches to quantum gravity that 
the geometry of spacetime could be deformed by the existence of 
a minimal measurable length scale [5]. In fact, it is known that 
in string theory, the background geometry of spacetime gets de-
formed by the existence of a such minimal measurable length [1,
2]. The reason is that the smallest probe available in string theory 
is the fundamental string, and so the spacetime cannot be probed 
below the string length scale [3,4]. In fact, it has been demon-
strated that in perturbative string theory, the minimal measurable 
length lmin is related to the string length as lmin = g1/4

s ls (where 
ls = α′ is the string length, and gs is the string coupling constant). 
Even though non-perturbative effects can produce point like ob-
jects (such a D0-branes), it can be argued that a minimal length 
of the order of lmin = ls g1/3

s is produced by these non-perturbative 
effects [5,6]. Such a minimal measurable length exists in string 
theory because the total energy of the quantized string depends 
on the winding number w and the excitation number n. Now un-
der T-duality, as ρ → l2s /ρ , we have n → w . Thus, it is possible to 
argue using the T-duality that a description of string theory below 
and above ls are the same, and so string theory contains a minimal 
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measurable length scale [5]. It should be noted that an effective 
path integral of the center of mass of the string (for strings prop-
agating in compactified extra dimensions) has been constructed, 
and T-duality has been used to demonstrate that such a system 
has a minimal length associated with it [7,8]. As the construction 
of double field theory has been motivated from T-duality [9,10], it 
is expected that such a minimal length will also exist in the double 
field theory [11].

It may be noted that even if the string theory does not turn 
to be the true theory of quantum gravity, the argument for the 
existence of a minimal measurable length in spacetime could still 
hold. As it can be argued, a minimal measurable length scale, at 
least of the order of Planck length, would exist in all approaches 
to quantum gravity. This is because any theory of quantum gravity 
has to produce consistent black hole physics, and the black hole 
physics can be used to prove the existence of a minimal mea-
surable length of the order of Planck length. The reason is that 
the energy needed to probe spacetime below Planck length is less 
than the energy needed to produce a mini black hole region of 
spacetime [12,13]. As production of such a mini black hole would 
restrict our ability to probe this region of spacetime, so the black 
hole physics can also predicts the existence of a minimal measur-
able length. In fact, it has been demonstrated that an extended 
structure in the background geometry of spacetime also exists in 
the loop quantum gravity [14], and it is responsible for remov-
ing the big bang singularity. Furthermore, a minimal measurable 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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length exists even in Asymptotically Safe Gravity [15]. It has also 
been argued that such a minimal measurable length will exist in 
conformally quantized quantum gravity [16]. As it is possible than 
such a minimal measurable length exists in spacetime, it is impor-
tant to study the consequences of the existence of such a minimal 
measurable length.

As it is possible for the string length scale to be several or-
ders larger than the Planck scale [5], the minimal length scale can 
also be much larger than the Planck length. In fact, it is possible 
to argue that in most models of quantum gravity such a minimal 
length can be much larger than Planck length (and it would only 
be bounded by the present experimental data) [17,18]. It has been 
suggested that such a minimal measurable length much larger than 
Planck scale should have a measurable effects, which can be de-
tected by performing more precise measurement of Landau levels 
and Lamb shift [19]. Actually, it has also been proposed that such 
a minimal measurable length will deform quantum systems, and 
this deformation can be detected experimentally using an opto-
mechanical setup [20]. As this deformation can even be detected 
in precise measurement of low energy systems, it can also be de-
tected in special future scattering experiments. So, it is important 
to consider the corrections to various scattering processes from 
such a minimal length. It has been suggested that the interaction 
between neutrons and a gravitational field can be measured us-
ing a gravitational spectrometer [21,22]. The deformation of such a 
system by the minimal measurable length, and its possible detec-
tion using such a gravitational spectrometer, has also been studied 
[23]. In fact, it has also been possible to obtain the corrections 
to quantum field theories and gauge theories (including standard 
model) from such a deformation [24–28]. Thus, it is important to 
analyze the effect this deformation will have on scattering pro-
cesses. So, in this paper, we will analyze the modifications to a 
low energy scattering process by the existence of such an minimal 
measurable length in spacetime. This minimal measurable length 
acts as an extended structure in spacetime, and the scattering of an 
extended structures is very different from the scattering of point 
particles. However, if the extended structure exists at a very small 
scale, then at large scale these phenomena can be expressed as a 
scattering of point particles. The corrections to these phenomena 
will occur at intermediate scales, and those will be the corrections 
we will analyze in this paper. This analysis implies an accurate 
description of internal finite (macroscopically small) distance cor-
rections to the scattering process itself, that will be done here.

It may be noted that it is possible for the deformation to oc-
cur at a scale much larger than Planck scale, and this scale would 
be bounded by the current experimental data [17–20,23]. How-
ever, a deformation at such a scale would have measurable conse-
quences for low energy phenomena, and this will hold for accurate 
measurements made on even non-relativistic quantum mechani-
cal systems [17–20,23]. So, we will now study such corrections 
to a non-relativistic scattering of a scalar particle by a Hermitian 
spherically symmetric potential V (R). As we will be analyzing a 
non-relativistic systems, so we will deform the system by a three 
dimensional spatial length [17–20,23], and not a full four dimen-
sional length in spacetime [24–26]. Even though we will consider 
only a single scattering process, similar corrections will occur for 
any scattering process, as these corrections are induced by an in-
ternal extended structure in spacetime. Thus, the form of these 
corrections will be a universal feature of scattering processes, and 
the main results of this paper can be used to obtain short distance 
corrections to any scattering processes.

To analyze the effect of the deformation on scattering processes, 
setting h̄ = 1, we will take into account the internal finite dis-
tance corrections, that are intrinsic to the scattering process itself. 
We note that for such simplest non-relativistic scattering on po-
tential V (R) the differential cross-section can be uniquely defined 
by on-shell scattering amplitude f +(q; k) [29,30], when the ini-
tial momentum state |k〉 turn to the final momentum state |q〉. 
The scattering amplitudes f ±(q; k) are coefficients of outgoing 
or incoming spherical waves as the first order terms of asymp-
totic expansion of the scattering wave function at the distance 
R = |R| → ∞:

�±
k (R) �−→

R→∞ ei(k·R) + e±ikR

R
f ±(q;k) + O

(
R−2), with

q = kn, k = kκ, n2 = κ2 = 1,

(1)

where R = Rn for the spherical coordinates with spherical angles 
ϑ, φ and n(ϑ, φ) = emnm �→ (sin ϑ cosφ, sinϑ sin φ, cosϑ) in Carte-
sian basis. The usual elastic differential and total cross-sections are 
defined by

dσ = ∣∣ f +(q;k)
∣∣2

d�(n), and σ =
∫ ∣∣ f +(kn;kκ)

∣∣2
d�(n). (2)

These cross-sections do not depend on R , and this behavior is 
important in the quantum scattering theory [29,30]. In order to 
discuss the full asymptotic expansion of scattering wave function, 
we note that �±

k (R) is a solution to Schrödinger equation for the 
scattering energy E > 0 with k2 = 2M E , potential U (R) = 2M V (R), 
and the vector operator ∇R = n∂R + R−1♥n (with the usual angles 
dependent vector part ♥n �→ (∂ϑ , (sin ϑ)−1∂φ) in spherical basis 
[31]):(∇2

R + k2)�±
k (R) = U (R)�±

k (R). (3)

It satisfies also the respective Lippmann-Schwinger equation, with 
x = 
v, v2 = 1

�±
k (R) = ei(k·R) −

∫
d3x

e±ik|R−x|

4π |R − x| U (|x|)�±
k (x). (4)

Now with the operator of angular momentum Ln = −i(n × ♥n)

and its square −♥2
n = L2

n ≡Ln , and the self-adjoint operator �n =√
Ln + 1

4 − 1
2 , the Green function admits the following operator 

form of asymptotic expansion [33,34] for |x| = 
 < R

e±ik|R−x|

4π |R − x| = χ�n(∓ikR)

4π R
e∓ik(n·x)

∼ e±ikR

4π R

{
1 +

∞∑
S=1

S∏
μ=1

[Ln − μ(μ − 1)]

S!(∓2ikR)S

}
e∓ik(n·x). (5)

Here the eigenvalue Ln �→ l(l + 1), with �n �→ l for integer l, 
and the function χl(y) is a sort of well known “spherical” Mac-
donald function [29–34]). When the potential1 U (
) has a finite 
effective range 
0, this expansion allows us to calculate all the pre-
asymptotic inverse-power corrections to the wave function �±

k (R). 
Thus, it is possible to write the differential scattering flux d�(R)

as asymptotic series on R−S , similar to (5), at R 
 
0 [33,34],

�±
k (R) ∼

R

0
ei(k·R) + χ�n(∓iqR)

R
f ±(qn;k)

= ei(k·R) + e±iqR

R
{

∞∑
S=0

h±
S (qn;k)

(∓2iqR)S
}q=k, (6)

1 It is enough for it to have finite first absolute moment and to decrease at 
 →
∞ faster than any power of 1/
 [33].
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with h±
S (kn;k) = Ln − S(S − 1)

S
h±

S−1(kn;k)

= 1

S!
S∏

μ=1

[Ln − μ(μ − 1)] f ±(kn;k) (7)

for amplitude f ±(q;k) = − 1

4π

∫
d3x e∓i(q·x)U (|x|)�±

k (x),

k = kκ, q = qn, q �→ k, (8)

and
d�(R)

d�(n)

= 1

2ik
[ ∗

f +(qn;kκ)(χ←
�n

(iqR)
↔
∂ Rχ→

�n
(−iqR)) f +(qn;kκ)]q=k,

(9)

where �(R) ≡
∫

d�(R)

d�(n)
d�(n) = σ , due to

(χl(ikR)
↔
∂ Rχl(−ikR)) = 2ik. (10)

The upper arrows indicate the directions of action of the operators, 
e.g. 

↔
∂ R = →

∂ R − ←
∂ R and f ∗ is the complex conjugate of f . The 

important feature of asymptotic power expansions (5)–(9) is that 
they still exactly disappear [33] for total (elastic) flux �(R) (10), 
which turned to cross-section σ (2) (already not depending on R) 
due to the self-adjointness of operators Ln, �n on the unit sphere 
and the value (10) of Wronskian [29,30]. It may be noted that the 
influence of the behavior (6) at such finite spatial distance R onto 
event rate seems important for explanation of reactor anomaly in 
neutrino flavor oscillations [34–36].

We will now analyze a short distance correction to such a 
system due to the existence of a minimal measurable length in 
spacetime. This will be done by analyzing the effects of a minimal 
measurable length on the asymptotic expansion of scattering wave 
function (6) and then on the differential scattering flux (9). Now 
the scattering wave function �±

l j
(R) being a positive energy (E >

0) solution of Schrödinger equation would satisfy the Lippmann-
Schwinger equation deformed by the existence of a minimal length 
in spacetime. The existence of a minimal measurable length scale 
in turn deforms the usual uncertainty principle from �x�p � 1/2
to a generalized uncertainty principle: �̂xl�p̂l � |(1 + 3β〈〈̂p2

l 〉〉)|/2, 
and �̂xl�p̂m � |β〈〈̂pl p̂m〉〉| � 0 for l �= m, where β is a small per-
turbative dimension parameter of the deformation [4,37,38]. Since 
〈〈̂p2〉〉 � 〈〈̂p2

l 〉〉 holds for averaging over any quantum state, the 
generalized uncertainty principle in turn deforms the Heisenberg 
algebra, and deformed operators satisfy [38–42]:

[̂xl, p̂m] = i
[
δlm + β

(
δlmp̂2 + 2p̂l p̂m

)]
≈ i

[
δlm + β

(
δlmp2 + 2pl pm

)]
,

l,m = 1,2,3, p̂2 = p̂l p̂mδlm. (11)

This deformed Heisenberg algebra of deformed operators x̂l, ̂pm

can be related perturbatively for small β to the usual Heisenberg 
algebra [xl, pm] = iδlm , with usual representation of p = −i∇x for 
pl pmδlm = p2, as x̂m = xm and p̂ = p(1 + βp2) = −i∇x(1 − β∇2

x)

[38–42]. It may be noted that other sources of such deformations 
of the Heisenberg algebra have been motivated by non-locality 
[43], doubly special relativity [44,45], deformed dispersion rela-
tions in the bosonic string theory [46], Horava-Lifshitz gravity [47,
48], discrete spacetime [49], models based on string field theory 
[50], spacetime foam [51], spin-network [52], and noncommutative 
geometry [53]. So, we will deform the coordinate representation 
of the momentum operator in such a general way, that the free 
Hamiltonian (for x �→ R) is deformed as

H0 = p2 = −∇2
R �−→ H̃0 = (̂p)2 = p2 + βg

(
p2)

= −∇2
R + βg

(−∇2
R

)
, (12)

where g(−∇2
R) is a real differentiable function of the −∇2

R , such 
that g(0) = 0 = g′(0). Strictly speaking, it describes only first term 
of low energy expansion of some more general Hamiltonian.2 Now 
the deformation (11) of the Heisenberg algebra, produces a poly-
nomial of order g(−∇2

R) �→ 2(−∇2
R)N with N = 2 in the Hamilto-

nian (12). However, as shown below, the results obtained here can 
be easily generalized to any general polynomial function g(z) of 
z = −∇2

R , containing any powers zn with 2 � n � N (for arbitrary 
N > 2). The dimension of β is always determined by the lowest 
value of n.

The deformation of the Lippmann-Schwinger equation can be 
obtained from the deformation of stationary Schrödinger equation 
(3). Now in coordinate representation of momentum operator the 
deformation of the above free Hamiltonian (12), can be written as[−H̃0 + k2]�±

l j
(R) = U (R)�±

l j
(R). (13)

Thus, the wave function for this system satisfies the deformed 
Lippmann-Schwinger equation

�±
l j
(R) = ei(l j ·R) −

∫
d3xG(±)

k (R − x) U (|x|)�±
l j
(x). (14)

It depends on solutions of free problem with the assumed entire 
(polynomial) function g(z) as

H̃0 ei(l j ·R) = k2 ei(l j ·R) ≡ E ei(l j ·R), l j = � j(k)κ, (15)[∇2
R − βg

(−∇2
R

) + k2]G(±)

k (R − x) = −δ3(R − x), (16)

G(±)

k (R − x) ≡
∫

d3q

(2π)3
ei(q·(R−x)) F (q). (17)

Since Eq. (16) leads to the equation [q2 +βg(q2) −k2]F (q) = 1, the 
above relation can be expressed as

G(±)

k (R − x) =
∫

d3q

(2π)3

ei(q·(R−x))

[q2 + βg(q2) − k2 ∓ i0] , where

|R − x| = r. (18)

For �(q2) = q2 + βg(q2) − k2, with q = qn′ and d3q = q2dqd�(n′), 
the Green function is reduced to

G(+)

k (R − x) = 2

(2π)2r

∞∫
0

dq q sin qr

�(q2) − i0

= 1

i(2π)2r

∞∫
−∞

dq q eiqr

�(q2) − i0
=

= 2π i

i(2π)2r

N∑
s=1

res

(
q eiqr

�(q2)

)
|q=�s

= 1

4πr

N∑
s=1

ei�sr

�′(�2
s )

, (19)

2 Similar to first relativistic correction from the expansion of E p =
c
√

p2 + (Mc)2 − Mc2 ≈ p2/(2M) − (p2)2/(8M3c2). The respective Lagrangian 
picture for the case (12) corresponding to (11) is discussed below.
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where �
(
q2) = 0, for q2 = �2

s , (20)

with �′(�2
s

) = 1 + βg′(�2
s

) �= 0, and

Im �s > 0, or �s �→ �s + i0, for Im �s = 0. (21)

We only need to consider the first-order poles, because the poles 
of higher orders will produce positive powers of r, destroying the 
asymptotic expansion (5). The real polynomial function �(q2) has 
only real or complex conjugate zeros �2

s (20), which satisfy the 
properties given in (21). For example, when all the contributions 
to (19) (for s � 2) have Im �s > 0 and vanish exponentially with 
r → ∞, the only one zero (20) �1 = �1(k) > 0 of function �(q2), 
admits the radiation condition of (21). So in expansion (19) for 
x = 
v, r = |R − x| 
 1/Im �s with s � 2, we need to keep only 
this zero, substituting (in the sense of asymptotic expansion)

G(+)

k (R − x) �−→ ei�1|R−x|

4π�′(�2
1)|R − x| (22)

into Eq. (14). Instead of amplitude (8), it leads to the on-shell scat-
tering amplitude, containing the corrections depending on β due 
to �1(k) and �′(�2

1) as

f +
11(q; l1) = − 1

4π�′(�2
1)

∫
d3x e−i(q·x)U (|x|)�+

l1
(x). (23)

So, in this situation one can uniquely define the scattering wave 
function, scattering amplitude and differential scattering flux by 
simple substitutions of k �→ l1 = �1κ , i.e., k �→ �1 = �1(k), q = qn, 
q �→ �1, everywhere in Eqs. (5) – (10), with the respective redefini-
tions of amplitude (23) and incoming flux. We are only interested 
in the physical wave function, which defines the physical ampli-
tude (and differential scattering flux (9))

�+
l1
(R) ∼

R

0
ei(l1·R) + χ�n(−iqR)

R
f +
11(q; l1)

�−→
R→∞ ei(l1·R) + ei�1 R

R
f +
11(q; l1) + O

(
R−2). (24)

Indeed, there always exists the single perturbative zero of �(q2)

as a solution of Eq. (20), which for small β → 0 goes to k2 as 
�2

s = k2 − βg(�2
s ) �→ �2

1 ≈ k2 − βg(k2), while other solutions turn 
to infinity3 like β−2ε with ε > 0. For example, for the case (11), 
(12) with g(z) = 2z2, N = 2, ε = 1/2 and ξ = βk2, they are defined 
with �s(k) = [�2

s (k)]1/2 for s = 1, 2, as

�2
1(k)

�2
2(k)

}
= −1 ± √

1 + 8ξ

4β
= 2k2

1 ± √
1 + 8ξ

=

⎧⎪⎨⎪⎩
�2

1(k) = k2(1 − 2ξ + 8ξ2 + ...), for |ξ | � 1,

�2
2(k) = − 1

2β
− �2

1(k) = − k2

2β�2
1(k)

.
(25)

So, for β > 0, ξ > 0, ∀ k2 > 0 with the main branches of all square 
roots, such as [−�2

s ∓ i0]1/2 = ∓i�s + 0 (when �s > 0), we have the 
above situation with �1(k) > 0, �2(k) = i|�2(k)|. For β < 0, ξ < 0, 
we have �2(k) > �1(k) > 0 only until 8|ξ | < 1. For 8|ξ | > 1, the 
roots �2

1,2(k) are complex conjugate, with Im �1,2 > 0 and there are 
no scattering waves. In general case for N > 2, the Green func-
tion (19) is also a multivalued function of scattering energy E = k2

that admits an extraction of a single-valued branch in the cutted 

3 That gives an essentially singular point at β = 0 for the function ei�s(k)R . We 
call such �s(k) as non-perturbative ones.
E-plane, with the cuts for every square root [−�2
s (k)]1/2 of the 

wave numbers (25). The first physical sheet of its Riemann sur-
face is defined by physical cut [29], that goes along E � 0, arising 
due to square root of perturbative wave number [−�2

1(k)]1/2. Then 
all other cuts with s � 2 are on the next sheets. For the above case 
(11), (12), with N = 2, ε = 1/2, the next “kinematical” cut from 
the point E = −(8β)−1 (for small β) lies far away from the origin 
on the first sheet (for β > 0). Besides, it is screened by physical cut 
for β < 0.

Actually, the free states of scattering theory may be determined 
by any real branch (21) of spectrum of free Hamiltonian (15). So, 
we are dealing with a sort of multichannel problem [29]. The point 
is that every s-term in the sum (19) with �s from Eq. (20), being a 
solution to free Eq. (3) (with U = 0) for k �→ �s , is a solution to ho-
mogeneous Eq. (16) for r > 0, but only the full sum (19) gives the 
solution (18) to non-homogeneous Eq. (16) for r � 0. After sub-
stitution of the relations (19), (5) into Eq. (14), the asymptotic 
expansion of wave function for arbitrary real j-mode � j = � j(k), 
with 1 � j, s � N � N and R = Rn, l j = � jκ , qs = qsn, qs = �s , can 
be written as

�+
l j
(R) ∼

R

0
ei(l j ·R) +

N∑
s=1

χ�n(−iqs R)

R
f +

sj (qs; l j)

�−→
R→∞ ei(l j ·R) +

N∑
s=1

eiqs R

R
f +

sj (qs; l j), (26)

with the scattering amplitudes:

f +
sj (qs; l j) = − 1

4π�′(q2
s )

∫
d3x e−i(qs ·x)U (|x|)�+

l j
(x). (27)

Now they look like a multichannel amplitudes [29], between differ-
ent channels (modes), if qs �= � j , i.e. s �= j (where any real j-mode 
scatters into all other possible real s-modes).

Let us firstly neglect (for small β) the difference between the 
exactly conserved current and the usually defined diagonal current 
[29–31,33], and assume that (marking this assumption as (!))

R2d�(n)(n · Jl j ,l j
[�(R)]) (!)�−→ R2d�(n)

1

2i
(

∗
�+

l j
(R)

↔
∂ R�+

l j
(R)),

with
↔
∂ R = (n · ↔∇R). (28)

Now the sums (26) at bilinear form of �+
l j
(R) in (28) lead to the 

sum of R-dependent interference terms proportional to ei(�s−�ν )R . 
However, the usually assumed macroscopic averaging over R over 
detector volume [29] recasts these rapidly oscillating exponentials 
as 〈〈ei(�s−�ν )R〉〉 = δsν . Thus, repeating all the steps of [33], we come 
to the form of differential scattering flux as diagonal sum of the in-
clusive expressions (similar to (9)) with k �→ � j , q �→ qs = �s . Now 
using (5)–(7) in (26), up to three leading orders in (�s R)−1, and 
under the assumption (!) in (28), we can write

d� j(R)

d�(n)

(!)�−→
N∑

s=1

qs

� j

{
| f +

sj (qsn;� jκ)|2

− 1

(qs R)
Im

( ∗
f +

sj(qsn;� jκ)Ln f +
sj (qsn;� jκ)

) +

+ 1

4(qs R)2

[|Ln f +
sj (qsn;� jκ)|2

− Re
( ∗

f +
sj(qsn;� jκ)L2

n f +
sj (qsn;� jκ)

)] + O

(
1

3

)}
. (29)
(qs R)
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In accordance with (10), every correction here disappears sepa-
rately under integration over solid angle due to the self adjoint-
ness of operator Ln on the unit sphere. For g(z) = 2zN one has 
1/ε = 2(N − 1). For very small dimensionless deformation param-
eter ξ = βk2(N−1) � 1, every real non-perturbative wave number 
�s > 0, s � 2 in sum (26) turns to infinity like �s ∼ |β|−ε (similarly, 
�2(k) (25) for β < 0). At the first sight, this leads to extremely 
rapid oscillations of exp{i�s R}, that can be neglected in (26), leav-
ing us again only with the unique scattering solution (23), (24).

However, this is not the case. Up to the values of scattering 
amplitudes, the contributions of these wave numbers in asymp-
totic expansion (9), (29) are suppressed again only by the inverse 
powers of �s R . Moreover, since the Born approximation becomes 
relevant for the wave functions (26) �+

l j
(R) ≈ ei(l j ·R) for j � 2 as 

well as for the scattering amplitude (27), the last arises as real 
Fourier image of a real function U (
), and gives zero contributions 
to the second term in (29) of order (�s R)−1 (as well as of order 
(�s R)−3). For the potentials U (
), non-singular at 
 → 0 [29,30], 
the amplitudes disappear fast enough with the square of momen-
tum transfer Q2

sj = (qs − l j)
2 → ∞:

f +
sj (qs; l j) ≈ f +B

sj (qs; l j) = − 1

4π�′(q2
s )

∫
d3x e−i(Qsj ·x)U (|x|),

Qsj = qs − l j, e.g. for

U (
) = α
2η−2, η > 0, that is

f +B
sj (qs; l j) = −α sin(πη)�(2η)|Qsj|−1−2η

[
�′(q2

s

)]−1
, (30)

where for s �= j � 2 one has |Qsj | ∼ � j ∼ |β|−ε → ∞. Since Q2
sj =

�2
s + �2

j − 2�s� j cosϑ for κ = e3, then the operator Ln , being for 
the spherically symmetric case (27) the second order differential 
operator with respect to the cos ϑ only [29], will be the similar 
operator with respect to the Q2

sj for every term in (29).
To make a self consistent calculations one should take into ac-

count the change of conserved current supplementing the change 
in the free Hamiltonian (12). Now we consider the corrections to 
the currents, for the case with g(z) = 2z2, due to difference of 
exact conserved current from the above assumed simple one (!) 
(28). For the general field theory, with the higher (second) deriva-
tives the Lagrangian of complex classical scalar field depends on its 
variables as F = F(ψ, ψ∗; ∂μψ, ∂μψ∗; ∂λ∂γ ψ, ∂λ∂γ ψ∗). Now for 
the field variation δψ , we can write δ(∂μψ) = ∂μ(δψ). So, the 
variation of the action δI[ψ, ψ∗] = δψI + δψ∗I (for the action 
I[ψ, ψ∗] = ∫

d4xF(ψ, ψ∗; . . .), and using ∂μ = (∂0, ∇x)), can be 
expressed as [31,54]

δI
[
ψ,ψ∗] =

∫
d4x

∑
ϕ = ψ∗,ψ

δϕ

[
δF
δϕ

− ∂μ

(
δF

δ(∂μϕ)

)

+ ∂λ∂γ

(
δF

δ(∂λ∂γ ϕ)

)]
+

+
∫

d4x∂μ

∑
ϕ = ψ∗,ψ

{
δϕ

[
δF

δ(∂μϕ)
− ∂γ

(
δF

δ(∂γ ∂μϕ)

)]

+ δF
δ(∂μ∂γ ϕ)

∂γ (δϕ)

}
. (31)

The vanishing of the expressions in square brackets in first integral 
in (31), represent the equations of motion. The vanishing of the 
expression for four-divergence in second integral in (31)), defines 
the respective conserved current. Now the equation of motion for 
the Schrödinger fields i∂0ψ = (H̃0 + U (x))ψ [31], corresponding to 
Schrödinger Eq. (13), with the Hamiltonian (12), for g(z) = 2z2, is 
produced by the first square brackets of Eq. (31), with the follow-
ing non-relativistic Lagrangian, for suitable chosen units and with 
n, m = 1, 2, 3

F = i
(
ψ∗∂0ψ − ψ∂0ψ

∗) − ((∇ψ∗) · (∇ψ)
) − U (x)ψ∗ψ

− 2β
(∇n∇mψ∗)(∇n∇mψ). (32)

So, for the global gauge transformation [31], δψ = iψδα, δψ∗ =
−iψ∗δα, ∂μδα = 0, the second integral in Eq. (31) define the gauge 
current Jμ = ( J 0, J) with J 0[ψ] = ψ∗ψ and

2iJ[ψ] = [
ψ∗∇Rψ − 2β ψ∗∇R

(∇2
Rψ

)
+ 2β

(∇mψ∗)∇R(∇mψ)
] − [. . .]∗, that is (33)

2iJ[ψ] = [
ψ∗∇Rψ − 4β ψ∗∇R

(∇2
Rψ

)
+ 2β ∇m

(
ψ∗∇R(∇mψ)

)] − [. . .]∗. (34)

This is exactly conserved even for non-diagonal case because (∇ ·
Jl j ls

[ψ]) = 0 for any stationary scattering solutions ψ = �±
l j
(R) to 

Schrödinger Eq. (13). It is easy to see that the full three-divergence 
in the third term in Eq. (34) does not give any contribution to 
the incoming flux, J[ei(l j ·R)] = l j(1 + 4β�2

j ). Moreover, at least up 
to the order of (�s R)−4, this third term does not give any con-
tribution to the differential scattered flux (29) generated by radial 
scattered flux Eq. (28). This is because for the current (34), there is 
(n · J[eiqs R/R]) = qs(1 +4βq2

s ), and every summand of the sum over 
s in the first pre-asymptotic relation (26) (and every s-term in the 
sum (19)), satisfies [33] free equation (3) as (∇2

R + q2
s )ψqs (R) = 0

for R �= 0. Eventually, for the case with g(z) = 2z2, up to the order 
of (�s R)−4, these currents corrections only renormalize the exter-
nal multipliers of differential scattering flux (29) as

qs

� j
�−→ qs

� j

(1 + 4βq2
s )

(1 + 4β�2
j )

= qs

� j

�′(q2
s )

�′(�2
j )

≡ qs

� j

H̃ ′
0(q

2
s )

H̃ ′
0(�

2
j )

= vs

v j
, where

v j = ∂ H̃0(�
2
j )

∂� j
. (35)

Here v j is the velocity. This result looks quite general and con-
forms to the physical meaning of currents, differential scattering 
flux and cross-section. Now with this substitution (denoted below 
by superscript ren) we can use the expression (29) without the 
assumption (!) of (28). Thus, we can use at least two additional 
terms of orders of (�s R)−3 and (�s R)−4. They are obtained from 
the general expression (5)–(9), with the following replacement in 
(29)

O

(
1

(qs R)3

)
�−→ 1

3(2qs R)3
Im

[
f ∗

sjL
3
n f sj − 3(Ln f sj)

∗L2
n f sj − 2 f ∗

sjL
2
n f sj

] +

+ 1

12(2qs R)4

{
3|L2

n f sj|2 + Re
[

f ∗
sjL

4
n f sj − 4(Ln f sj)

∗L3
n f sj

]
+ 12

[
Re

(
f ∗

sjL
2
n f sj

) − |Ln f sj|2
] −

− 8Re
[

f ∗
sjL

3
n f sj − (Ln f sj)

∗L2
n f sj

]}
, where for short:

f sj = f +
sj (qsn;� jκ), (Ln f sj)

∗ = f ∗
sj

←
Ln. (36)

We see that for non-perturbative modes � j(k) with j � 2, we only 
have the real Born amplitudes of type (30). They can contribute 
only to the even powers of R−S with S = 0, 2, 4, . . ., in expansion 
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of differential scattering fluxes. The respective expressions (29), 
(36), renormalized by the replacement (35), are the main result 
of this work. Rewriting them with obvious notations of the sum-
mands d�ren

sj (R)/d�(n) as

d�ren
j (R)

d�(n)
=

N∑
s=1

d�ren
sj (R)

d�(n)
, we define also

d�ren(R)

d�(n)
=

N∑
j=1

d�ren
j (R)

d�(n)
. (37)

It should be stressed that these quantities actually are those 
that measured experimentally at a finite distance R as differen-
tial cross-sections. Their intrinsic R-dependence given here is de-
fined only by observable quantities like the on-shell scattering 
amplitudes (23), (27) or partial phase shifts [33]. So, this intrin-
sic R-dependence seems to be sensitive to the corrections from 
existence of the minimal measurable length and can provide an 
additional opportunity for experimental resolution of these correc-
tions. When the experimental resolution will permit to distinguish 
between these different renormalized differential scattering fluxes 
(37) at different R , the perturbative mode j = 1 with different 
s � 1 modes (arised in Eqs. (26, (27), (29), (36)) will be the most 
interesting for observation due to the amplification factor (35). 
Now for the total cross-sections all the inverse-power terms in 
(29), (36) disappear again, and similar to (10), we obtain

�ren
sj (R) = vs

v j

∫ ∣∣ f +
sj (�sn;� jκ)

∣∣2
d�(n) = σ ren

sj , and

σ ren
j =

N∑
s=1

σ ren
sj , σ ren =

N∑
j=1

σ ren
j . (38)

So, such a measurement would be interesting when the experi-
mental resolution at least between σ ren

11 , σ ren
1 , and σ ren would be 

achieved.
In this paper, we have analyzed the short distance corrections 

to scattering processes. These corrections occur due to the exis-
tence of a minimal measurable length scale in spacetime. The ex-
istence of a minimal measurable length scale deforms the Heisen-
berg algebra, which in its turn deforms the coordinate representa-
tion of the momentum operator. The deformation of the momen-
tum operator produces the higher derivative corrections to the free 
Hamiltonian and, besides the changes of different physical pro-
cesses, modifies the Lippmann-Schwinger equation. The modifica-
tion of the Lippmann-Schwinger equation modifies the description 
of scattering processes. We explicitly calculate corresponding cor-
rections to the Green function and to conserved current for these 
processes. The obtained modification of scattering amplitudes de-
termine the corrections to the observable cross-sections and to the 
R- dependent differential scattering fluxes defined recently in [33]. 
So, it is justified that the existence of a minimal measurable length 
regardless to its origin can correct scattering processes, and scat-
tering experiments with finite macroscopically small base R can in 
principle detect such corrections.

It may be noted that the results obtained in this paper are 
quite general and can be applied to most non relativistic scatter-
ing processes, where they would act as universal corrections to 
all scattering processes due to an extended structure in spacetime. 
Such corrections would be observed at intermediate scale. It will 
be interesting to use these results to analyze specific scattering 
processes, and to obtain new bounds for the existence of a mini-
mal measurable length scale in spacetime.
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