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I. INTRODUCTION

Cosmic-ray (CR) muons originate from the decay of unstable hadrons produced by the

interactions of cosmic-ray primaries and secondaries with nuclei of the earth’s atmosphere.

Therefore the flux of CR muons contains information on primary cosmic rays (energy spec-

trum, composition, anisotropy) as well as on some properties of particle interactions at high

and super-high energies.

During the last years the experimental investigations of CR muons with large low-

background detectors for penetrating particles have expanded rapidly in a number of un-

derground laboratories, in addition to the direct measurements in the atmosphere and at

ground level. Side by side with the traditional range of problems of cosmic ray physics

some additional aspects arise within the framework of investigations with the new facilities.

Thus, for example, the flux of CR muons is used for calibration of the detectors and, at

the same time, it is an important source of background events for the majority of under-

ground experiments, especially in neutrino astronomy and astrophysics. Detailed study of

this background is very important for further progress in astroparticle physics.

Projects for the deep-underwater Čerenkov and acoustic detection of high-energy muons

and neutrinos have been discussed for a long time. The ultimate aim of these projects is to

build detectors of volume 107−109 m3 or even larger [1,2] which could be used, in particular,

to detect muons of energy up to 103 TeV, in order to study the CR muon flux at energies 2

to 3 orders of magnitude higher than those accessible in the present experiments. It should

be particularly emphasized that detectors of so enormous volume can be used to accurately

determine the energy, E, of individual muons passing through the apparatus if E exceeds a

few TeV [1].

In the near future the initial stage of the underwater muon and neutrino telescopes

DUMAND II in the ocean off the Hawaii island [3] and NT-200 in the Siberian lake Baikal



[4] will be commissioned. Besides, several new programs have been proposed, such as a

deep sea neutrino detector NESTOR in the southwest corner of the Peloponnisos [5] and

the project AMANDA for a large scale muon and neutrino detector in deep ice at the South

Pole [6] (see also Ref. [7] for a short summary on next generation detectors). Precision

calculations of different characteristics of the CR muon flux after propagation through thick

water layers are an imperative element for the successful realization of these projects.

The transport of high-energy CR muons through dense media has been the subject of

theoretical investigations over many years with the use of analytical [8–16], numerical [17,18],

and Monte Carlo [19–21] methods (see also Refs. [22,23] for a review of the early literature).

In the majority of the papers listed the depth-intensity relation (DIR) was studied. However,

for future experiments with large-scale underwater neutrino telescopes a detailed knowledge

of the energy spectra of muons at very large depths (large zenith angles) will be required in

addition to the total (oblique) intensities. Some results of calculations of the muon energy

spectra at large depths of matter were presented in Refs. [9,20,21] and in our previous

papers [14,15], but the increasing requirements on accuracy of the calculations stimulate us

to continue the investigation of the problem.

The main difficulty in the calculation of muon intensity and spectrum at large depths

consists in the fact that an ultrarelativistic muon of energy E above ∼ 100 GeV can, with

comparable probabilities, lose in a single event either a very small energy ∆E � E or an

energy ∆E ∼ E with generation of a large electromagnetic or hadronic shower due to ra-

diative or photonuclear interaction with matter. These fluctuations of the energy loss lead

to a pronounced range straggling. Considering that the rate of radiative and photonuclear

losses increases with energy, the fluctuation effect grows with energy and depth. An impor-

tant consequence of this effect is the impossibility to define a threshold energy for a muon

reaching a given depth. This fact presents a severe problem when reconstructing the surface



(sea-level) muon spectrum from a measured DIR (see, e.g., Ref. [24])1.

Available exact analytical methods of cascade theory [11] require that the initial muon

spectrum at the boundary of the medium be a power-law and that the differential cross

sections for muon-matter interactions depend only on the fraction of energy lost by the muon,

v = ∆E/E, but not on the muon energy, E, itself (“scaling”). It is also assumed that the rate

of the continuous (ionization) energy loss is constant. We shall call this set of assumptions

the SPS model (Scaling + Power-law Spectrum). Such model have been considered after

Rozental’ and Strel’tsov [28] in Refs. [8–10]. Zatsepin and Mikhalchi [8] have suggested a

very simple approximate solution to the muon transport equation (TE). Their approach has

been generalized to a quasi-power initial spectrum [9]. The exact solution for DIR within

the framework of the SPS model has been obtained by Nishimura [10] (see also Refs. [11–13])

with the use of the technique of integral transformations. Both these approaches have been

employed with some modifications in numerous works (see, e.g., Refs. [16,21]).

However, as is generally known, the assumptions of the SPS model hold roughly only at

very high muon energies (above 1−10 TeV), and so the calculations based on the SPS solution

should be corrected by one or another way. Despite the relatively weak energy dependence

of the differential cross sections as well as the closeness of the real sea-level muon spectrum

to a power-law form within wide energy intervals, these corrections prove to be very large

and they increase with depth. The point is that the muon energy spectrum under thick

1In this connection the problem of prompt muons which appear in the atmosphere due to decays of

charmed hadrons should be mentioned [25,26]. The data of the current underground experiments,

those from European detectors (NUSEX, Frejus, MACRO), on the one hand, and those from

Baksan and KGF, on the other hand, contradict each other (see Ref. [26]). A certain part of these

disagreements can be attributed to an inaccuracy in the computation of the fluctuation effect (see

also Ref. [24] and a discussion in Ref. [27]).



layers of matter depends exponentially on integrals of the differential cross sections with a

weight which depends on the initial spectrum. To our knowledge there is not any proper

and consistent way to calculate these corrections at large depths for the time being.

In the present study we discuss a comparatively simple and universal method for the

calculation of differential energy spectra as well as other important characteristics of CR

muons at arbitrary depth, which allows us to avoid from the start the simplifying assump-

tions about the scale invariance of the cross sections and the (quasi) power-law incident

muon spectrum. The solution to the TE is constructed by iterations, starting from an

initial approximation with the correct high-energy asymptotic behavior. In the range of

applicability of the initial approximation (sufficiently high energies) it becomes feasible to

introduce an (effective) analog of the threshold energy at the boundary which is very useful

in many respects. One of the advantages of the computer realization of our approach (in

comparison with the direct Monte Carlo simulation or a purely numerical technique) is its

high performance which allows to carry out verifications of various hypotheses on the pri-

mary CR spectrum and composition, charm production models, models of the photonuclear

interaction, etc with good precision and in a negligible CPU time. This enables to estimate

the sea-level muon spectrum using the data of underground/underwater measurements by

exhaustion, avoiding to solve the much more difficult inverse scattering problem.

It should be noted that the method under consideration is a development of our previous

studies [14,15].



The organization of this paper is as follows. In Sec. II we give some preliminaries and

notations. We present also a very short review on some features of the differential cross

sections for muon-matter interactions at high energies which will be needed later on. In

Sec. III the solution to the TE in a continuous loss approximation is discussed briefly for

the methodological goals. In Sec. IV we consider the exact solution to the TE within the

SPS model; for the present purpose (to study the asymptotic behavior of the TE solution

at high energies) the simplest expression in the form of a series in powers of 1/E will be

quite enough. In Sec. V we derive an approximate solution to the TE in the general case;

essential properties of the solution are discussed in some detail and illustrated by the SPS

model. The iteration algorithm for calculating corrections to the approximate solution is

described in Sec. VI and the convergency of the algorithm is examined. Finally, in Sec. VII

we summarize the results and some perspectives for applications of the method.



II. PRELIMINARIES

A. Transport equation

The propagation of relativistic muons through a homogeneous medium is described by

the one-dimensional transport equation (TE)

∂

∂x
D(E, x)− ∂

∂E
[βi(E)D(E, x)] = 〈D(E, x)〉 (2.1)

with the boundary condition

D(E, 0) = D0(E) . (2.2)

Here D(E, x) is the differential energy spectrum of muons at depth x in the medium. In the

general case

x = secϑ
∫ z

0
ρ(z′)dz′ ,

where ρ(z) is the density of the medium at distance z from the boundary, and ϑ is the

angle of incidence measured from the normal to the boundary (zenith angle). The function

βi(E) = −(dE/dx)ion is the rate of the ionization energy losses which, as ever, are assumed

to be continuous. The symbol 〈D〉 denotes a functional describing the “discrete” muon

energy loss resulting from radiative and photonuclear processes:

〈D(E, x)〉 =
∑
k

〈D(E, x)〉k , (2.3)

〈D(E, x)〉k =

〈
N0

A

∫ dσZ,Ak (E1, E)

dE
D(E1, x)dE1

〉
Z,A

−
〈
N0

A

∫ dσZ,Ak (E,E2)

dE2
D(E, x)dE2

〉
Z,A

. (2.4)

Here dσZ,Ak (E1, E2)/dE2 is the differential cross section for a muon interaction of type k:

di t + − i d ti (k ) b t hl (k b) d i l ti l tt i



(k = n), and E1 (E2) is the initial (final) muon energy; N0 is the Avogadro number; Z and

A are the atomic number and atomic weight of the target nucleus. The brackets 〈. . .〉Z,A

indicate an averaging over Z and A. Integrations in Eq. (2.4) are performed between the

limits allowed by the k-type process kinematics:

Ek
1,min(E) ≤ E1 ≤ Ek

1,max(E) , Ek
2,min(E) ≤ E2 ≤ Ek

2,max(E) .

Equation (2.1) does not take into account the muon finite lifetime, which is permissible

for ultrarelativistic energies and/or for dense enough media2. Moreover, in the equation (2.1)

(valid within the “straight-forward” scattering approximation) multiple Coulomb scattering

and the angular deflection due to inelastic scattering have been ignored. This approximation

is not so inoffensive but an examination of the problem does not enter the scope of the present

work.

A way to include the fluctuation effect due to knock-on electron production by muons will

be considered later on. An estimation of this effect for DIR has been made by Nishimura [12].

According to Ref. [12] the effect leads to an increase of DIR at all depths by approximately

3% (in the special case of an initial spectrum D0(E) ∝ E−4). A reliable analytical method

for describing the ionization straggling of relativistic muons with incident energies below

∼ 100 GeV in thick absorbers has been suggested recently by Striganov [29], but processes

others than ionization were not taken into account.

2The average decay range of a muon of energy E is given by

λd(E) = τµpρ/(mµc) ' 6.23× 105 g/cm2
(

ρ

1 g/cm3

)(
p

1 GeV/c

)
,

where mµ, τµ, and p =
√

(E/c)2− (mµc)2 are the muon mass, lifetime, and momentum, respec-

tively. Clearly λd(E) is much longer than the muon ionization range λi(E) [30] in a dense medium,

so the muon decay effect is totally unessential in all instances of interest.



Let us introduce the macroscopic cross sections Σk by the definition

Σk(v, E) =

〈
N0

A

dσZ,Ak (v, E)

dv

〉
Z,A

, (2.5)

where

dσZ,Ak (v, E)

dv
=

∣∣∣∣∣Edσ
Z,A
k (E,E′)

dE′

∣∣∣∣∣
E′=(1−v)E

,

and v is the fraction of energy lost. With help of Eq. (2.5) we rewrite Eq. (2.4) in the more

convenient form:

〈D(E, x)〉k =
∫ 1

0
[(1− v)−1Φk(v, Ev)D(Ev , x)− Φk(v, E)D(E, x)]dv . (2.6)

Here and below

Φk(v, E) = θ(vkmax(E)− v)θ(v− vkmin(E))Σk(v, E) , (2.7)

θ(x) is the usual step function, vkmin(E) and vkmax(E) are the extreme values of v for the

k-type process, Ev ≡ E/(1− v), and the function Φk(v, Ev) is defined by Eq. (2.7) with the

substitution E ⇒ Ev.

At ultrarelativistic energies (E � mµc2, specifically at E above ≈ 10 GeV), we have

with sufficient accuracy that

vkmin(E) = 0 , vkmax(E) = 1 , (2.8)

and hence Φk(v, E) = Σk(v, E). Moreover, this may formally be extended to all energies

considering that radiative and photonuclear losses are inessential to an accuracy of about

1% at energies under 10 GeV for all media of interest in cosmic ray physics [30,31], and only

ionization losses are important. Nevertheless, in the following we shall use approximation

(2.8) only for asymptotic estimations, but we shall assume, if necessary, that vkmin(E) � 1

and 1− vkmax(E)� 1 for k = p, b, n in the energy region covered.



B. Some features of muon-matter interactions at high energies

A detailed description of the cross sections dσZ,Ak (v, E)/dv used in our calculations will

be presented in a separate publication. For a short review, see Ref. [31]. To provide an

inside into the properties of the radiative processes we have presented in the Appendix

a very simple parameterization of the v-dependencies of the (normalized) cross sections

suggested by van Ginneken [32]. As one can see from the Appendix, strong energy loss

fluctuations are more probable in bremsstrahlung. The direct pair production cross section

goes roughly as 1/v2 to 1/v3 over most of the range (v > 0.002). Usually these losses are

treated as continuous. Nevertheless, as it follows from our estimations, the fluctuation effect

related to pair production is not exactly negligible and it can prove essential at large depths.

Hence we will be considering the pair production contribution as discrete, together with

bremsstrahlung.

To this must be added that in the limit of complete screening, i.e. for

γZ(v, E) ≡ 200qmin

meZ1/3
'
(

11

Z

)1/3 (1 TeV

E

)
v

1− v � 1

(where γZ is the degree of screening and qmin ' m2
µv/[2E(1−v)] is the minimum momentum

transfer), the radiative cross sections are functions of the variable v only (scaling). However

for values of v which are not too small (namely, at 1−v� 1) complete screening occurs only

at very high energies, E ∼ 10 TeV. At lower energies the cross sections grow logarithmically

with E.

Unfortunately there is no simple parameterization for the differential cross section of

the inelastic muon scattering on a nucleus dσZ,An /dv. Moreover, both v- and (especially)

E-behavior of the cross section are very model dependent.

According to the vector-meson-dominance hypothesis dσZ,An /dv is expressed in terms of

the total cross section for virtual photon absorption by nucleons and nuclei. A generalized

t d i d l (GVDM) [33] d t l d ib th f t f th



tions in the diffraction region (low 4-momentum transfers, Q2, and large photon energies, ν):

growth with energy of the cross section for nucleon photoabsorption and shadowing effects

in nuclear photoabsorption. An approximate expression for dσZ,An /dv has been evaluated in

the framework of the GVDM by Bezrukov and Bugaev [33]:

dσZ,An (v, E)/dv ∝ σγN(ν)Fn(v, ν)/v .

Here σγN(ν) is the total cross section for absorption of a real photon of energy ν = vE by

a nucleon. In agreement with accelerator and cosmic-ray experiments [34,35] σγN(ν) grows

slowly above ν ∼ 50 GeV and can be represented approximately as

σγN(ν) '
[
114.3 + 1.647 ln2

(
ν

47 GeV

)]
µb .

The growth of σγN (ν) causes dσZ,An /dv to depend on the muon energy, E. The function

Fn(v, ν) decreases slowly with increasing ν, gradually compensating the energy dependence

of σγN (a manifestation of the shadowing effect of nucleons inside a target nucleus). Never-

theless, the logarithmic growth of dσZ,An /dv quantitatively remains up to E ∼ 10 TeV and

possibly in the asymptotics. The v-dependence of Fn(v, ν) is rather complicated; for v over

∼ 0.1 it falls off roughly as ln v with increasing v, thus the fluctuation effect due to this

process is comparatively large.

It should be mentioned that the absence of any unitarity constraint allows a very rapid

(in comparison with the GVDM prediction) increase with energy of the total photoproduc-

tion cross section as a result of the gluonic structure of the high-energy photon (“minijet

production mechanism”) [36]. Although available cosmic-ray data obtained with under-

ground detectors [34] (for ν up to ∼ 10 TeV) and with EAS arrays [35] (ν up to 103−104

TeV !) do not support this possibility, and what is more, a recent study [37] has shown that

the calculations of Ref. [36] strongly overestimate the minijet production contribution at

ν > 103 TeV, a significant increase of the photoproduction cross section is still anticipated



at ultra-high energies. Thus the photonuclear interaction is one of the interesting objects

for study in future experiments with large underground and underwater detectors.

III. CONTINUOUS LOSS APPROXIMATION

Let us at first consider the so-called continuous loss (CL) approximation which is often-

used for estimations of the CR muon intensity and spectrum under thin enough layers of

matter (see, e.g., Refs. [23,24] and [38]). It can be obtained from Eq. (2.1) by a formal

expansion of the integrand of expression (2.6) in powers of Ev at Ev = E, to an accuracy of

O(v). As a result the functional (2.3) becomes

〈D(E, x)〉 =
∑
k

∫ 1

0
(1 + E

∂

∂E
)Φk(v, E)D(E, x)vdv .

Let us define

bk(E) =
∫ 1

0
Φk(v, E)vdv =

∫ vkmax(E)

vkmin(E)
Σk(v, E)vdv .

Clearly bk(E) is the relative partial rate of average energy loss due to the k-type process,

and

β(E) = βi(E) + E
∑
k

bk(E) = −(dE/dx)tot

is the total rate of energy loss. Thus Eq. (2.1) in the CL approximation takes the form

∂

∂x
D(E, x) =

∂

∂E
[β(E)D(E, x)] . (3.1)

Here and below D(E, x) stands for the differential muon spectrum in the CL approximation.

Similarly I(E, x) and J(x) will stand for integral spectrum and DIR, respectively.

The solution to Eq. (3.1) with boundary condition (2.2) is

D(E, x) = D0(E(E, x))
β(E(E, x))

β(E)
, (3.2)



where E(E, x) is the (only) root of the equation λ(E, E) = x, and

λ(E1, E2) =
∫ E1

E2

dE

β(E)

is the average range of a muon with initial energy E1 and final energy E2. In other words,

E(E, x) is the energy which a muon must have at the boundary of the medium in order to

reach depth x with energy E. It is easily seen that E(E, x) is a monotonically increasing

function of variables E and x, and the following identities are valid for any x′ ≤ x and

E′ ≥ E:

E(E(E, x′), x− x′) = E(E′, x− λ(E′, E)) = E(E, x) .

It is clear also that E(E, 0) = E.

From Eq. (3.2) a very nice expression for the integral muon spectrum at depth x can be

obtained. Let I0(E) ≡ I(E, 0) be the integral spectrum at the boundary, then

I(E, x) =
∫ ∞
E

D(E′, x)dE′ =
∫ ∞
E(E,x)

D0(E′)dE′ = I0(E(E, x)) . (3.3)

According to Eq. (3.3) the expression for DIR, J(x), can be written as

J(x) = I0(E(Et, x)) , (3.4)

where Et is some detection threshold. It can be argued that the value J(x) is practically

independent of Et at large depths when Et is sufficiently low (really, when Et � 1 TeV).

In spite of the simplicity and physical transparency of the CL approximation, its range

of application is fairly restricted. The inadequacy of this approximation is obvious from

the following simple example. Let the initial spectrum, D0(E), have a breakoff at some

energy Emax, i.e. D0(E) = 0 at E > Emax. Then, in accordance with Eqs. (3.2) and

(3.3), D(E, x) = 0 and I(E, x) = 0 at x > λ(Emax, E). It is incorrect, of course, at least

when λ(Emax, E) < λd(E). We will demonstrate below, within a simple model, that the CL

l ti h t ti b h i E d it i i l t f hi h i



IV. ASYMPTOTIC BEHAVIOR (SPS MODEL)

We consider here the SPS model mentioned in Sec. I. Let us assume that the functions

Φk(v, E) and the ionization loss rate, βi(E), are energy independent,

Φk = Φk(v) , βi ≡ a = const , (4.1)

and the initial spectrum is a power function of energy,

D0(E) = Dγ
0 (E) = CE−(γ+1) . (4.2)

Moreover muon energies are assumed to be high enough so that conditions (2.8) is fulfilled.

In the SPS model the rate of the average energy loss is simply a + bE, where b =

bp + bb + bn is a constant3, and, therefore, the differential and integral muon spectra in the

CL approximation are described by

DSPS(E, x) = Dγ
0 (E)e−γbx

[
1 +

a

bE
(1− e−bx)

]−(γ+1)

, (4.3)

ISPS(E, x) = Iγ0 (E)e−γbx
[
1 +

a

bE
(1− e−bx)

]−γ
, (4.4)

where Iγ0 (E) = γ−1CE−γ is the initial integral spectrum.

A characteristic property of the SPS model in the CL approximation is a flat (energy

independent) spectrum (both differential and integral) for E � W ≡ a/b ∼ 1 TeV at

sufficiently large depths (x� 1/b),

3In reality the quantities bk (k = p, b, n) and βi grow with energy logarithmically (or as a power of

logarithm) up to E ∼ 10 TeV (see Refs. [30,31] and [39]). But, as we have noted in Sec. II B, it is

not inconceivable, strictly speaking, that the growth of the relative rate of the average photonuclear

loss extends at E � 10 TeV if a dramatic increase of the total photoproduction cross section with

i t



DSPS(E, x) ' Dγ
0 (W )e−γbx , ISPS(E, x) ' Iγ0 (W )e−γbx ,

and recovery of its original form,

DSPS(E, x) ' Dγ
0 (E)e−γbx , ISPS(E, x) ' Iγ0 (E)e−γbx ,

for E �W at all depths. According to Eq. (3.4), DIR takes the form

JSPS(x) = Iγ0 (W (ebx − 1)) ,

independently of the threshold energy Et if Et � W (1− e−bx).

Let us consider now the exact solution to Eq. (2.1) within the framework of the SPS

model. Denote

bγ+n =
∫ 1

0
Φ(v)[1− (1− v)γ+n]dv , n = 0, 1, . . . ,

and

%γ = bγ+1 − bγ =
∫ 1

0
Φ(v)(1− v)γvdv ,

with Φ(v) = Φp(v) + Φb(v) + Φn(v). We shall seek the solution as a series in powers of the

dimensionless parameter ξ = a/(%γE):

DSPS(E, x) = Dγ
0 (E)e−bγx

∞∑
n=0

(γ + 1)n
n!

fn(x)(−ξ)n (4.5)

(here (. . .)n is the Pochhammer symbol). Substituting Eq. (4.5) into Eq. (2.1), we find that

the coefficient functions fn(x) satisfy the following recurrence formula:

f ′n(x) + (bγ+n − bγ)fn(x) = n%γfn−1(x) , fn(0) = δn0 . (4.6)

Integration of Eq. (4.6) yields

fn(x) = δn0 + n%γ

∫ x

0
exp[−(bγ+n − bγ)(x− x′)]fn−1(x′)dx′ . (4.7)



In particular, for n = 0 and 1 we have from Eq. (4.7) f0(x) = 1 and f1(x) = 1− e−%γx.

By induction, and using the fact that bγ+n − bγ < n%γ at n ≥ 1, one can easily verify

that

[f1(x)]n ≤ fn(x) ≤ (%γx)n

for all values of x. Therefore the series (4.5) is absolutely and uniformly convergent under

the condition

ζ ≡ (%γx)ξ =
ax

E
≤ 1 , (4.8)

but it is divergent when ξf1(x) > 1.

It can be shown that the obtained solution reduces to the solution in the CL approxi-

mation (4.3) if one sets formally bγ+n = (γ + n)b, for n ≥ 0. A rough fulfillment of these

equalities at not too large values of n, which is a consequence of a quick growth of the

electrodynamic cross sections at v � 1 (see the Appendix), serves as the basis for the ap-

plicability of the CL approximation. It is obvious, however, that for any n ≥ 0 and γ > 1

the exact inequalities bγ+n < (γ + n)b take place, which are satisfied (irrespective of the

behavior of the function Φ(v)), in so far as (1− v)t > 1− tv, at any t > 1 and 0 < v ≤ 1.

Thus the ratio

r(E, x) = DSPS(E, x)/DSPS(E, x) ,

which is a measure of the fluctuation effect, increases with depth as exp[(γb − bγ)x] at

ξ � 1. In other words the CL approximation underestimates the muon intensity at high

energies. The magnitude of the effect depends critically on the slope of the initial spectrum

(the remainder γb − bγ quickly increases with γ) and it can be very large. To cite a single

example, r(E, x) is about 10 at E = 10 TeV and x = 10 km of water equivalent (for standard

rock), in the case of the vertical spectrum of conventional CR muons from the decay of π



and K mesons [14]. It should be noted at the same time that the ratio r(E, x) does not

necessarily exceed unit at all energies.

The model under consideration shows that it is impossible to take into account the

fluctuation effect on muon spectra at large depths as a correction to the CL approximation

and a reliable method is required. Clearly the exact solution (4.5) by itself is unsuitable for

calculations at fairly low energies and/or at large depths; it cannot be used, in particular,

to compute DIR. At the same time the SPS model suggests a starting point for the required

method: we may, using an ansatz which has the correct asymptotic behavior at high energies,

construct the solution for the TE applying an appropriate iteration procedure. In the next

sections we will consider this approach to the problem.

It will be convenient to specify the asymptotic behavior of the cross sections and ini-

tial spectrum at high energies as in the SPS model, that is to demand the fulfilment of

equalities (4.1) and (4.2) at energies E � Eas, where Eas (a conventional bound of the

asymptotic regime) is a sufficiently large quantity. Then the SPS model will serve as a base

for asymptotic estimations. It will be recalled that the asymptotic form of the photonuclear

cross section contribution Φn(v, E) is actually unknown as well as, strictly speaking, the

high-energy behavior of the initial muon spectrum, D0(E). Nevertheless, the condition im-

posed does not restrict generality as long as a concrete value of the bound of the asymptotic

regime, Eas, is not indicated. Evidently this condition does not play a part in calculation of

D(E, x) at E < Eas due to the fast decrease with energy of the initial spectrum.



V. GENERAL CASE: FIRST APPROXIMATION

Consider the general case. Assuming analyticity of the ratio D(Ev, x)/D0(Ev) as a

function of the variable v at the point v = 0, let us expand this function in a power series

in v. This yields

D(Ev , x) = D0(Ev)

[
1 +

∞∑
n=1

vn∂̂n

]
[D(E, x)/D0(E)] ,

where

∂̂n ≡
n∑
l=1

(
n−1

l−1

)
El

l!

∂l

∂El
.

Then, introducing the definitions

∆n(E) =
∫ 1

0
Φ(v, Ev)η(v, E)vndv , n = 1, 2, . . . , (5.1)

A(E) =
∫ 1

0
[Φ(v, E)− η(v, E)Φ(v, Ev)]dv , (5.2)

with η(v, E) = (1− v)−1D0(Ev)/D0(E), we find

〈D(E, x)〉 =

[ ∞∑
n=1

∆n(E)D0(E)∂̂nD
−1
0 (E)−A(E)

]
D(E, x) . (5.3)

Due to the fact that the functions Φk(v, E) depend rather slowly on E, and the initial

muon spectrum D0(E) is close to a power-low one at high enough energies (vide supra),

the ratio D(E, x)/D0(E) should be asymptotically a relatively slowly varying function of E.

Thus the derivatives D0(E)∂̂nD
−1
0 (E)D(E, x) are small. It is obvious also that the integrals

∆n(E) decrease with increasing n. Moreover, due to the specific v-dependence of the cross

sections (see Sec. II B), ∆1(E) � ∆n(E) at n > 1. These simple heuristic considerations

allow us to use as a first approximation only two leading terms of the expansion (5.3). In

this approximation Eq. (2.1) is merely a partial differential one,[
∂

∂
− β1(E)

∂

∂E
+R(E)

]
D(1)(E, x) = 0 , (5.4)



where the following notations has been used:

β1(E) = βi(E) + ∆1(E)E , R(E) = A(E)− [g(E) + 1]∆1(E)− β ′i(E) ,

with g(E) + 1 = −ED−1
0 (E)D′0(E). We will assume subsequently that g(E) is a positive

definite and nondecreasing function. Clearly g(E) = γ as E � Eas.

The solution to Eq. (5.4) can be expressed as

D(1)(E, x) = D0(E1(E, x)) exp[−K(E, x)] ≡ D(E, x) , (5.5)

where

K(E, x) =
∫ x

0
R(E1(E, x′))dx′ =

∫ E1(E,x)

E

R(E′)dE′

β1(E′)
. (5.6)

The function E1(E, x) can be obtained from the equation λ1(E1, E) = x (an analog of

the energy-range relation), with

λ1(E1, E2) =
∫ E1

E2

dE

β1(E)
.

The properties of the function E1(E, x) are completely similar to the ones of above-mentioned

function E(E, x), but the physical meaning of this quantity is not so obvious. Considering

that the function β1(E) is an effective rate of the average energy loss (both continuous and

discrete) for a given initial muon spectrum, the function E1(E, x) can be interpreted as the

effective (for the given D0(E)) energy which a muon must have at the boundary of the

medium in order to reach depth x having energy E with a nonzero probability. To refine

this interpretation let us rewrite Eq. (5.5) in the form which is like the expression for the

spectrum in the CL approximation (3.2):

D(E, x) = D0(E1(E, x))
β1(E1(E, x))

β1(E)
P(E1(E, x), E) , (5.7)

where



P(E1, E2) = exp

[
−
∫ E1

E2

q(E′)dE′

β1(E′)

]
(5.8)

and

q(E) = R(E) + β ′1(E) = A(E)− g(E)∆1(E) + ∆′1(E)E . (5.9)

Evidently the function q(E) reflects the effect of muon range straggling. It can be demon-

strated that q(E) > 0 at least for high enough energies. Indeed, substituting Eqs. (5.1) and

(5.2) into the right side of Eq. (5.9) yields

q(E) =
∫ 1

0
{Φ(v, E)− [1 + g(E)v]η(v, E)Φ(v, Ev)}dv

+
∫ 1

0
[g(Ev)− g(E)]Φ(v, Ev)η(v, E)vdv

+
∫ 1

0
Ev
∂Φ(v, Ev)

∂Ev
η(v, E)vdv . (5.10)

The factor [1 + g(E)v]η(v, E) does not exceed unit4 and decreases fast (tends to zero)

with increasing v, while the function Φ(v, Ev) depends on the second argument, Ev, only

logarithmically. Thus the first integral in Eq. (5.10) is positive. The second integral is

nonnegative on the assumption that g(E) is an increasing (or constant) function. The third

integral is small in comparison with the first one due to the factor η(v, E)v in the integrand

and (mainly) to the inequality

Ev

∣∣∣∣∣∂Φ(v, Ev)

∂Ev

∣∣∣∣∣ � Φ(v, Ev) ,

which takes place even in the absence of the full screening [notice that γZ(v, Ev) < 1 at E

above ∼1 TeV at any v]. Hence the last contribution cannot change the sign of the function

q(E).

4Because the derivative

∂

∂v
{[1 + g(E)v]η(v,E)}= −g(Ev)

{
1− g(E)

g(Ev)
+ [1 + g(E)]

v

1− v

}
η(v, E)

i ti f > 0 d (0 E) 1



Thus the function q(E) can be interpreted as an effective absorption coefficient dependent

upon the radiative and photonuclear energy losses, and the function P(E1(E, x), E) should

be treated as the probability for a muon with energy E1(E, x) at the surface to reach depth

x with energy E.

Simple examination shows that ∆1(E) < b(E). Therefore, E1(E, x) < E(E, x) for all

values of E and x. Moreover, the remainder E(E, x) − E1(E, x) increases fast with depth

since

∂

∂x
[E(E, x) − E1(E, x)] = β(E(E, x))− β1(E1(E, x))

= βi(E) − βi(E1) + b(E)E −∆1(E1)E1 > 0 ,

and we have taken into account that βi(E) is a nondecreasing function of E after a broad

minimum at p ≈ 300 MeV/c, almost independently of the medium [30]. It is obvious

also that the remainder E(E, x) − E1(E, x) increases when the slope of the initial muon

spectrum grows. The decrease of the minimal muon energy at the surface, necessary in

order that a muon can reach a given depth with a given energy, is an evident reflection of

the discreteness of radiative and photonuclear muon energy losses. The function E1(E, x) is

a useful approximation to estimate this minimal energy within the scope of the approximate

solution (5.5).

From Eqs. (5.7-5.9) the following expression for the integral spectrum in the first ap-

proximation can be obtained:

I (1)(E, x) =
∫ ∞
E1(E,x)

D0(E′)P(E′, E1(E′,−x))dE′ ,

which is an evident generalization of Eq. (3.3) obtained in the CL approximation. It is

obvious that I (1)(E, x) < I0(E1(E, x)). In the realistic case, when q(E) is a function slowly

varying with energy we find



I (1)(E, x) ' I0(E1(E, x))e−qx ,

where q is the average of q(E).

Consider now the approximate solution (5.5) in the SPS model. It is clear that all

moments

∆n =
∫ 1

0
Φ(v)(1− v)γvndv ≡ ∆γ

n

(in particular, ∆1 = ∆γ
1 ≡ %γ) and the parameter A = bγ are constant in this case. So the

effective absorption coefficient q = bγ − γ%γ ≡ qγ is a positive constant, such that

1

2
γ(γ + 1)∆γ

2 < qγ < γ2∆0
2 .

One can easily show that

ESPS
1 (E, x) = E[(1 + ξ)e%γx − ξ] and P(ESPS

1 (E, x), E) = e−qγx .

By this means the differential and the integral spectra can be written as

D
(1)
SPS(E, x) = Dγ

0 (E)e−bγx
[
1 + ξ(1− e−%γx)

]−(γ+1)
, (5.11)

I
(1)
SPS(E, x) = Iγ0 (E)e−bγx

[
1 + ξ(1− e−%γx)

]−γ
, (5.12)

and DIR becomes

J
(1)
SPS(x) = Iγ0 (Wγ(e

%γx − 1))e−qγx ,

for any Et �Wγ(1− e−%γx), where Wγ = a/%γ . Thus, at large depths,

J (1)
SPS(x)/JSPS(x) ' (%γ/b)

γe(γb−bγ)x

As might be expected, the first two terms of the exact 1/E -expansion (4.5) coincide with

th di t f th i f D
(1)

(E ) Th f th i ti



(5.11) has the correct behavior at high energies at least when ζ ≤ 1 (see (4.8)). It should

be noted also that the approximation (5.11) is self-consistent. Indeed, one can show that

∂̂n

D(1)
SPS(E, x)

Dγ
0 (E)

 =
(γ + 1)n

n!
Zn(E, x)

D(1)
SPS(E, x)

Dγ
0 (E)

 ,

where

Z(E, x) =
ξf1(x)

1 + ξf1(x)
=

ξ(1− e−%γx)
1 + ξ(1− e−%γx) .

Considering that Z(E, x) < 1 at any E and x the series in the right side of Eq (5.3) is always

uniformly convergent and one may actually cut it off after the 1st term if

(γ + 2)

2

∆γ
2

∆γ
1

Z(E, x)� 1 ,

and that is certainly admissible when ξf1(x) � 1. This is supporting the approximation

(5.5) as a suitable ansatz.

VI. GENERAL CASE: ITERATION SCHEME

Let us now represent the solution to Eq. (2.1) by the following form

D(E, x) = D(1)(E, x)[1 + δ(E, x)] , (6.1)

where δ(E, x) is an unknown function (“relative correction”). To derive the equation for

δ(E, x) it is convenient at first to rewrite Eq. (5.4) as

∂

∂x
D(E, x) − ∂

∂E
[βi(E)D(E, x)] = [∆1(E)ω(E, x)−A(E)]D(E, x) , (6.2)

where

ω(E, x) =
E[h(E)− h(E1(E, x))]

β1(E)
, (6.3)

ith



h(E) = R(E) +
[g(E) + 1]β1(E)

E
= A(E) +

[g(E) + 1]βi(E)

E
− β ′i(E) . (6.4)

In order to derive Eq. (6.2) we have used Eqs. (5.5) and (5.6). Direct substitution of Eq. (6.1)

into Eq. (2.1), in view of Eq. (6.2), then gives

L̂iδ(E, x) =
∫ 1

0
Φ(v, Ev) {Ω(E, x; v)[1 + δ(Ev, x)]

− [1 + ω(E, x)v][1 + δ(E, x)]}η(v, E)dv , (6.5)

where the differential operator

L̂i =
∂

∂x
− βi(E)

∂

∂E

was introduced, and we have defined

Ω(E, x; v) =
D0(E)

D0(Ev)

D0(E1(Ev, x))

D0(E1(E, x))
exp[K(E, x)−K(Ev, x)] . (6.6)

Clearly δ(E, 0) = 0. We shall seek the solution to Eq. (6.5) using a procedure of successive

approximations.

Let us note initially that the function δ(E, x) follows a c2(x)/E2 -dependence as E � Eas,

where c2(x) is independent of energy. It is a straight corollary of the coincidence of the first

two terms in the 1/E -expansions for the approximate solution (5.5) and the exact SPS

solution (4.5). Therefore

Θ(E, x; v) = δ(Ev, x)− (1− v)2δ(E, x) ∝ (1− v)2v/E3

as E � Eas, i.e. the function Θ(E, x; v) is small in absolute value by comparison with

δ(E, x). We assume that at all energies the term with the factor Θ(E, x; v) can be neglected

in the integrand of the right side of Eq. (6.5) as a first approximation. Thus the equation

for the correction function in second approximation becomes

[L̂ R (E )]δ(2)(E ) R (E ) δ(2)(E 0) 0 (6 7)



where

Rl(E, x) =
∫ 1

0
Φ(v, Ev)

{
Ω(E, x; v)(1− v)l − [1 + ω(E, x)v]

}
η(v, E)dv . (6.8)

Solving Eq. (6.7) yields

δ(2)(E, x) =
∫ x

0
exp

[∫ x

x′
R2(Ei(E, x− x′′), x′′)dx′′

]
R0(Ei(E, x− x′), x′)dx′

≡
∫ Ei(E,x)

E
exp

[∫ Ei(E,x)

E′

R2(E′′, x− λi(E,E′′))
βi(E′′)

dE′′
]
R0(E′, x− λi(E,E′))

βi(E′)
dE′ , (6.9)

where Ei(E, x) is the only root of the equation λi(Ei, E) = x, and

λi(E1, E2) =
∫ E1

E2

dE

βi(E)

is the ionization range of a muon with initial energy E1 and final energy E2 (hence Ei(E, x)−

E is simply the energy lost due to ionization).

Let us consider one evident consequence of Eq. (6.9). Clearly R2(E, x) < R0(E, x) for

all values of the arguments. Substituting this inequality into Eq. (6.9), and integrating over

E′ then gives

exp[K2(E, x)] ≤ 1 + δ(2)(E, x) ≤ exp[K0(E, x)] , (6.10)

with

Kl(E, x) =
∫ x

0
Rl(Ei(E, x − x′), x′)dx′ .

The exponential factors in (6.10) can be treated as the lower and upper limits for the

correction to the “survival probability” P(E1(E, x), E) so long as

∫ x

0
[q(E1(E, x− x′))− R0(Ei(E, x− x′), x′)]dx′ > 0 .

In order to build an equation for calculation of the correction function in the l-th ap-

i ti t th t th t ti b h i f th i d δ(E ) δ(2)(E ) i



c3(x)/E3 with an E-independent function c3(x), as it can be easily verified using Eqs. (6.5)

and (6.7). Therefore, in the next approximation we may put approximately

δ(Ev, x)− δ(2)(Ev, x) ' (1− v)3[δ(E, x)− δ(2)(E, x)] .

Repeating the consideration we find by induction that δ(E, x) − δ(l)(E, x) → cl(x)/El as

E � Eas, and thus we put

δ(Ev, x)− δ(l)(Ev, x) ' (1− v)l+1[δ(E, x)− δ(l)(E, x)] . (6.11)

Let us define

Θl(E, x) = δ(l)(E, x)− δ(l−1)(E, x) , l ≥ 2 , (6.12)

with δ(1)(E, x) ≡ 0 by definition. From Eq. (6.5), using Eq. (6.12) and Eq. (6.11) we obtain

the recursion chain of equations for the functions Θl(E, x) :

[L̂i −Rl(E, x)]Θl(E, x) = <l−1(E, x) , l ≥ 3 , (6.13)

where

<l(E, x) =
∫ 1

0
Φ(v, Ev)Ω(E, x; v)[Θl(Ev, x)− (1− v)lΘl(E, x)]η(v, E)dv . (6.14)

The solution to Eq. (6.13) is given by

Θl(E, x) =
∫ x

0
exp

[∫ x

x′
Rl(Ei(E, x− x′′), x′′)dx′′

]
<l−1(Ei(E, x− x′), x′)dx′

≡
∫ Ei(E,x)

E
exp

[∫ Ei(E,x)

E′

Rl(E′′, x− λi(E,E′′))
βi(E′′)

dE′′
]
<l−1(E′, x− λi(E,E′))

βi(E′)
dE′ . (6.15)

To verify the convergency of the iteration procedure consider firstly the behavior of the

function Rl(E, x) at l � 1. Due to the factor (1− v)l in the first term of the integrand of

Eq. (6.8) and the properties of the macroscopic cross sections (see Sec. II B), only the region



of small values of v is important in this case. So at l � 1 the function Ω(E, x; v) can be

estimated as

Ω(E, x; v) ' Ω(E, x; 0) + v

[
∂Ω(E, x; v)

∂v

]
v=0

or, considering the definitions (6.3), (6.4), and (6.6),

Ω(E, x; v) ' 1 + ω(E, x)v ∼ 1 . (6.16)

Thus

Rl(E, x)→ −
∫ 1

0
Φ(v, Ev)[1 + ω(E, x)v][1− (1− v)l]η(v, E)dv

at l � 1 and, therefore, Rl(E, x) < 0 and |Rl(E, x)| increases indefinitely with l. Clearly

the exponential factor

exp
[∫ x

x′
Rl(Ei(E, x− x′′), x′′)dx′′

]

in the integrand of Eq. (6.15) diminishes fast with increasing l.

On the other hand, in view of the fact that Θl(E, x) ∝ E−l at energies high enough, we

can write Θl(Ev, x)− (1− v)lΘl(E, x) = v(1− v)lFl(E, x; v), where Fl(E, x; v) is a function

which can be estimated at v � 1 by

Fl(E, x; 0) = E
∂Θl(E, x)

∂E
+ lΘl(E, x) ∝ E−(l+1) .

Hence, using Eq. (6.16), the integral (6.14) can be estimated at l� 1 as

<l(E, x) ' Fl(E, x; 0)
∫ 1

0
Φ(v, Ev)[1 + ω(E, x)v]η(v, E)(1− v)lvdv .

Thus <l(E, x) and <l(Ei(E, x − x′), x′) are positive and decrease when l increases, if the

function Fl(E, x; 0) is bounded in magnitude as l→∞ or even if |Fl(E, x; 0)| increases with

l not too fast. This can be verified by induction.



The foregoing proves that Θl(E, x)→ 0 as l→∞ for any depths at least for high enough

energies. Due to the correct asymptotic behavior of the functions Θl(E, x) at all values of l

this indicates that the iteration procedure converges, that is

δ(E, x) = lim
l→∞

δ(l)(E, x) .

A more cumbersome analysis and numerical verifications demonstrate that this statements

is true at all energies under quite general assumptions on the energy dependence of the

rate of the continuous energy loss, the macroscopic cross sections, and the initial spectrum;

specifically if the functions βi(E) and Φ(v, E) increase monotonically and sufficiently slowly,

while D0(E) decreases with energy so that g(E) is a slightly varying function of energy. As

it follows from numerical estimations, the convergency rate is very good, and usually only a

few iterations are needed to reach an accuracy of the order of 1% at depths up to ∼ 20 km

of water equivalent for muon energies above ∼ 1 GeV.

By way of illustration let us again direct our attention to the SPS model and consider the

second approximation correction function δ
(2)
SPS(E, x). Under condition (4.8) we can write

the exact expression for the correction function, using definition (6.1) and Eqs. (4.5) and

(5.11):

δSPS(E, x) =
∞∑
n=2

(γ + 1)n
n!

fn(x)− [f1(x)]n

[1 + ξf1(x)]γ+1
(−ξ)n . (6.17)

Therefore at ζ ≤ 1 the leading asymptotic term has the form

cγε
[
a0 + a1e

−%γx + a1e
−2%γx − (a0 + a1 + a2)e

−(2−ε)%γx
]
ξ2 , (6.18)

where cγ = (γ + 1)(γ + 2)/2, a0 = 1/(2− ε), a1 = −2/(1− ε), a2 = −1/ε, and ε = ∆γ
2/∆

γ
1 .

The expression for Rl(E, x) in the SPS is given by

Rl(E, x) = Rγ
l (Z(E, x)) (6.19)

ith



Rγ
l (z) =

∫ 1

0
Φ(v)

{
(1− v)j

(1− zv)γ+1
− [1 + (γ + 1)zv]

}
(1− v)γdv .

In particular, at z � 1 we have

Rγ
0(z) ' cγ∆

γ
2z

2 , Rγ
2(z) ' −(2− ε)∆γ

1 . (6.20)

One can easily show, using Eqs. (6.19) and (6.20) that the asymptotic behavior of the exact

correction function (6.18) is reproduced, as was to be expected, by the correction function in

the second approximation (see Eq. (6.9)). It is important that the approximate correction

δ(2)
SPS(E, x) is definite and bounded at all values of E and x, in contrast with the exact

expression (6.17) given by a series which converges only under condition (4.8). This can be

seen from the constraint (6.10). Indeed, a little manipulation, and taking into account that

∂Z(E, x)/∂E ≤ 0 and ∂Z(E, x)/∂x ≥ 0

yields

K0(E, x) =
∞∑
n=2

(γ + 1)n
n!

∆γ
n

∫ x

0
Zn(E + ax′, x− x′)dx′

≤ xRγ
0(Z(E, x))Z(E + ax, x)/Z(E, x)

≤ xRγ
0

(
ξ

1 + ξ

)
1 + ξ

1 + ξ + ζ
≡ Kmax

0 (E, x) .

Hence

0 ≤ δ(2)
SPS(E, x) ≤ exp[Kmax

0 (E, x)]− 1 .

and, therefore, the survival probability calculated in the second approximation, does not

exceed the factor exp{−[qγx − Kmax
0 (E, x)]}. It is obvious that the function Kmax

0 (E, x)

and, therefore, the correction δ
(2)
SPS(E, x) are both bounded at all finite values of E and

x. A significant consequence resides in the fact that δ(2)
SPS � 1 at ξ � 1 for any x since

Kmax
0 ' cγεξζ/(1+ ζ)� 1. In other words, the first approximation solution (5.11) is correct

d th diti ξ � 1 t ll d th



Analogous statements can be also proved in the general case: the first approximation

solution (5.5) is practically exact at all depths when E � βi(E)/∆1(E).



VII. SUMMARY AND OUTLOOK

The method described enables us to calculate with a controlled precision the differential

energy spectra of CR muons after propagation through thick layers of matter. It is appro-

priate for any depths when muon energies are high enough and provides a way for including

the real (non-power-law) initial muon spectrum and the energy variation of the continuous

and discrete muon energy losses, with only the formal (but rather natural) requirement for

the asymptotic behavior of the initial spectrum and the cross sections. A computer imple-

mentation of the method is fully straightforward and the required CPU time is small. This

enables to use the method in on-line processing for underground/underwater experiments.

It is important that the useful notion of the minimal muon energy at the boundary E(E, x),

which has a physical sense when the range straggling is negligible (i.e. for small depths),

has an analog (E1(E, x)) in the case of arbitrary large fluctuations (i.e. for arbitrary depths)

when the first approximation solution D(E, x) is available (high muon energies, specifically

E > a few TeV).

We intend in the near future to give a detailed numerical illustration of the convergency

of the iteration procedure besides calculating results on the CR muon energy spectra (dif-

ferential and integral) and DIR at large depths for different types of rocks and water with

varying charm production models etc. In recent years a rather representative array of data

on DIR in rock and (to a lesser extent) in water has been accumulated by many experiments.

One should systematize all these data and compare them against theoretical predictions.

We also look forward to analyze future underground and underwater experiments to

possibly throw light on the prompt muon problem and to derive information about super-

high-energy muon interactions with nuclei, primarily about the rather poorly studied pho-

tonuclear interaction.
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APPENDIX:

van Ginneken’s parameterization of the v-distributions

for radiative processes

We give here a parameterization of the normalized cross sections fk(v, E) = σ−1
k dσk/dv

(where dσk/dv ≡ dσZ,Ak /dv) for pair production and bremsstrahlung as a function of the

fractional energy loss v suggested in Ref. [32]. The formulas presented below are valid at

muon energies from ∼ 100 GeV up to 30 TeV and enable one to estimate the comparative

probabilities of “soft” (v � 1) and “hard” (v ∼ vkmax ∼ 1) losses in the radiative processes.

• Direct pair production off both nuclear and electron targets •

f (n,e)
p (v, E) ∝ const , 5me/E < v < 25me/E ,

∝ v−1 , 25me/E < v < v1 (if E > 25me/v1) ,

∝ v−2 , v1 < v < v2 (if E > 25me/v2) ,

∝ v−3 , v2 < v < 1 ,

where v1 = 0.002 and v2 = 0.02 . For very small v (up to the kinematic limit vpmin(E) =

4me/E) dσp(v, E)/dv ∝ σ0(vE) ln(1/v)v−1, where σ0(ν) is the total cross section for pair

production by a photon of energy ν (Kel’ner’s approximation). Thus dσp/dv follows roughly

1/ d d i th i � 1 M V h ( ) i ti ll t t ( )



Below ν ≈ 5me , σ0(ν) remains small (< 0.05σ0(∞)), and it increases roughly linearly until

ν ≈ 25me, where σ0(ν) ≈ 0.5σ0(∞).

• Bremsstrahlung contribution off a nuclear target •

f
(n)
b (v, E) ∝ v−1 , vbmin(E) < v < 0.03 ,

∝ vCn(E) , 0.03 < v < vnb (E) ,

∝ (1− v)C
′
n(E) , vnb (E) < v < 1 ,

where vbmin(E) = 0.001/E , vnb (E) = (1 + 4.5/
√
E)−1 , Cn(E) = 1.39 − 0.024 lnE , and

C ′n(E) = 1.32− 0.12 lnE . Only for values of v above 0.995 the parameterization is not very

reliable, but it is not important in practice.

• Bremsstrahlung contribution off atomic electrons •

f (e)
b (v, E) ∝ v−0.95 , vbmin(E) < v < 0.05 ,

∝ vCe(E) , 0.05 < v < veb(E) ,

∝ (vbmax(E)− v)1/2 , veb(E) < v < vbmax(E) ,

where vbmax(E) = (1 + 10.92/E)−1 , veb(E) = vnb (E)vbmax(E) , and Ce(E) = 1.50− 0.03 lnE .

The proportionality factors which was omitted in the above parameterization can be

obtained by continuity and normalization. A slight Z-dependence in the v-distributions has

been ignored. The energy E and the electron mass me have been expressed in GeV.
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