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INTRODUCTION

Atmospheric neutrinos are generated in the decays
of charged pions, charged and neutral kaons, and
other heavier mesons and barions generated when cos�
mic rays interact with atomic nuclei of the Earth’s
atmosphere. Atmospheric neutrino fluxes in a wide
energy interval have remained an object of heightened
interest over the last two decades: in the comparatively
low�energy region, a deficiency of muon neutrinos
was discovered, which is interpreted as a manifestation
of the neutrino oscillation effect (conversion of νμ to
another type); high� and ultra�high�energy neutrinos
represent an ineradicable background in the detection
of neutrinos from remote astrophysical sources.
Detection of high�energy neutrinos of galactic and
extragalactic origin is a major problem in astrophysics;
in order to solve it, in the last decade, the ÍÒ200+
(Aynutdinov et al., 2006; Aynutdinov et al., 2009),
AMANDA�II (Achterberg et al., 2007; Ackermann et
al., 2008; Abbasi et al., 2009, 2010), and ANTARES
(Margiottaet al., 2009) large deep�water neutrino tele�
scopes have been created. Construction is being com�
pleted on the new�generation giant IceCube detector
(Berghaus et al., 2009) with an effective volume on the
order of a cubic kilometer; other scale detectors
(Km3NeT, NEMO, etc.) are also being designed.

Study of the atmospheric neutrino background is
part of the problem of searching for astrophysical neu�
trinos and an essential problem both for experimenters
(measuring the background is the first step, necessary
also for debugging a neutrino telescope and developing
techniques for reconstructing events from a neutrino
flux, comparatively well studied only in energy regions
of up to 1 TeV), as well as for theorists investigating the
possible mechanisms for atmospheric neutrino gener�
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ation and making atmospheric quantitative predic�
tions of the energy spectrum and zenith�angular neu�
trino distributions in a wide energy range.

Despite the large number of published works with
calculations of atmospheric neutrino spectra (see,
e.g., Volkova, 1980; Buktevich, et al., 1989; Lipari,
1993; Naumov et al., 1998; Fiorentini et al., 2001:
Barr et al., 2004; Honda et al., 2004; Enberg et al.,
2008; Kochanov et al., 2009), as well as reviews (Nau�
mov, 2002; Gaisser and Honda, 2002) of one�dimen�
sional and three�dimensional calculations of an atmo�
spheric neutrino flux, it remains obscure how large the
differences are caused by the uncertainties of existing
models of hadron–nuclear collisions at high energies,
i.e., in the region where there are no direct measure�
ments of particle interaction cross sections. Also
unclear are the uncertainties caused by ambiguity in
reconstructing the spectrum and composition of pri�
mary cosmic rays in the “knee” region based on exper�
imental data from installations that record wide atmo�
spheric showers.

The high and ultra�high�energy region has only
now become accessible to experimental study. At
present, the energy spectrum of atmospheric muon
neutrinos in the AMANDA�II experiment is mea�
sured in the energy interval of 1–100 TeV (Achterberg
et al., 2007; Ackermannet al., 2008; Abbasi et al.,
2009, 2010); earlier, neutrino spectra were measured
in the Frejus experiment at energies of up to 1 TeV
(Daum et al., 1995). Preliminary results of processing
the data obtained at the IceCube installation in the
energy interval of 102–3 × 106 GeV are now being pub�
lished (Chirkin et al., 2009; Montaruli, 2009). The
main contribution to a neutrino flux near the upper
boundary of the specified interval should give decays of
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charmed particles, whose contribution remains the
source of the largest uncertainty owing to the insuffi�
cient level of studying charm generation processes.

This work presents the results of a new calculation
of the energy spectrum of muon neutrinos in the
energy range of 10–107 GeV for zenith angles from 0°
to 90° and angular distributions of fluxes for different
energy values. Calculation uses several high� and
ultra�high�energy hadron interaction models
(SIBYLL 2.1 (Fletcher et al., 1994; Ahn E.�J. et al.,
2009), QGSJET�II (Ostapchenko, 2006à,b), and
Kimel and Mokhov (KM) parametrization (Kimel
and Mokhov, 1974, 1975; Kalinovsky et al., 1989)),
which have been checked in recent calculations of
cosmic�ray hadron and muon fluxes (Kochanov et al.,
2008; Sinegovsky et al., 2010). Results of calculating
neutrino fluxes are compared both with the data of the
Frejus, AMANDA�II, and IceCube experiments, and
with calculations in recent years.

CALCULATION METHOD AND MODEL
OF HADRON–NUCLEAR COLLISIONS

Calculation is performed based on a method (Nau�
mov and Sinegovskaya, 2000) for solving hadron–
nuclear cascade equations, which in general make it
possible to consider the nonpower character of the pri�
mary spectrum of cosmic rays, scaling violation of par�
ticle�generation cross sections, and increase with the
energy of total inelastic cross sections of hadron–
nuclear collisions (see also (Kochanov et al., 2008,
2009; Sinegovsky et al., 2010)).

As the basic spectrum of primary cosmic rays, we
used direct measurement data obtained in the ATIC�2
experiment (Panov et al., 2007) and the Zatsepin and
Sokolskaya (ZS) model (Zatsepin and Sokolskaya, 2006;
Zatsepin and Sokolskaya, 2007), which well describes the
ATIC�2 data in the interval of 10–104 GeV and offers
motivated extrapolation to an energy range of up to
100 PeV. The ZS model supposes the existence of
three classes of galactic cosmic ray sources—super�
nova explosions and new, different types of flares in
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which power spectra with different maximum rigidi�
ties and spectral indices are generated. Relying on
ATIC data to a significant degree, the model makes it
possible to describe experimental data on the cosmic
ray spectra obtained in direct measurements and to
pass to the ultra�high�energy region, where measure�
ments are conducted by the method of wide atmospheric
showers. The proton and helium nuclei spectrum in the
ZS model at E > 106 GeV agrees with KASCADE exper�
iment measurements (Antoni et al., 2005; Apel et al.,
2009).

The spectrum and composition of primary cosmic
rays in the KASCADE experiment have been recon�
structed from SHAL measurements using the
QGSJET01 and SIBYLL 2.1 interaction models. In
additon, in this calculation, the renowned Gaisser
et al. parametrization of the spectrum and composi�
tion of primary cosmic rays (Gaisser and Honda,
2002; herein, GH) has also been used. We have taken
the parametrization version with the so�called high
contribution of helium nuclei as that most adequately
corresponding to KASCADE experiment data (the
version of the spectrum and composition recon�
structed according to the SIBYLL 2.1 model). To visu�
ally illustrate differences in the interaction models
used in this calculation, it is convenient to compare
weighted moments zpc(E0) with the power spectrum
(γ = 1.7), calculated for proton interactions with
atmospheric atomic nuclei p + A  c + X:

where x = Ec/E0, c = p, n, π±, Κ±.

The obtained values (Table 1) indicate the approx�
imated Feynman scaling of cross sections in the
SIBYLL 2.1 and KM models and its soft violation in
the QGSJET model for protons and π mesons.
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∫
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Table 1. zpc moments calculated for γ = 1.7

Model QGSJET II�03 SIMBYLL 2.1 KM

E0, Gev 102 103 104 102 103 104 102 103 104

zpp 0.174 0.198 0.205 0.211 0.209 0.203 0.178 0.190 0.182

znn 0.088 0.094 0.090 0.059 0.045 0.043 0.060 0.060 0.052

0.043 0.036 0.033 0.036 0.038 0.037 0.044 0.046 0.046

0.035 0.029 0.028 0.026 0.029 0.029 0.027 0.028 0.029

0.0036 0.0036 0.0034 0.0134 0.0120 0.0097 0.0051 0.0052 0.0052

0.0030 0.0028 0.0027 0.0014 0.0022 0.0026 0.0015 0.0015 0.0015
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MUON NEUTRINO FLUXES 
IN THE EARTH’S ATMOSPHERE

In addition to the main sources of usual muon neu�
trinos, μe3�, πμ2�, and Kμ2� decays, we consider the
contributions from three�particle semileptonic decays

of ,  kaons, as well as small contributions of
decay chains K  π  νμ. The effects of cascade

Kμ3
±

Kμ3
0

three�dimensionality can be neglected at energies of

E ≥ 1 GeV for directions
close to a vertical, and E ≥ 5 GeV for directions close
to horizontal (see, e.g., (Barr et al., 2004; Honda et al.,
2004)).

Table 2 shows the comparison of neutrino fluxes
calculated with the three hadron interaction models
and two variants of the primary spectrum, as well as the
following relations for 0° and 90°:

Muon neutrino fluxes obtained from the SIBYLL
2.1 and QGSJET�II models (column 3) are obviously
different, whereas the KM and QGSJET�II models
yield very close results (column 2). At first glance, this
is quite unexpected, since calculation of muon fluxes
(Kochanov et al., 2008) has demonstrated the close�
ness of the KM and SIBYLL 2.1 models. From Table 1,
however, we can see that the difference in the calcu�
lated neutrino fluxes is related to the zpK values, i.e.,
with the departure of kaons in nucleon–nuclei colli�
sions, a factor that more strongly influences a high�
energy neutrino flux than a flux muon with the same
energies. Thus, the necessity of careful accelerator
research of the processes of strange particle generation
at average and high energies is obvious. Figure 1 shows
the zenith�angular distributions of atmospheric neu�
trinos  for the energy interval of

1–105 TeV. Calculations are performed using the
QGSJET�II and SIBYLL 2.1 interaction models for
two versions of the spectrum and composition of pri�
mary cosmic rays (GH and ZS). As expected, the
shape of the angular distribution changes with energy
(in region to 100 TeV); the energy dependence at large
angles is especially significant. The influence of the
considered primary spectra and hadron models on the
angular distribution of neutrinos at energies above
1 TeV is barely noticeable.

Figure 2 shows the results of our calculation of
muon neutrino spectra (lines) in comparison with the
calculation (symbols) performed in (Barr et al., 2004)
by the Monte Carlo method with the TARGET 2.1
program. Such comparison is interesting, because
these two calculations, differing in method and hadron
interaction model, have been performed for the same
parametrization of the spectrum and nuclear compo�
sition of primary cosmic rays (GH) (Gaisser and
Honda, 2002). As can be seen from the figure, our pre�
dictions of the neutrino spectrum for two hadron inter�
action models, QGSJET�II and KM, agree well with
the results of the TARGET program in a wide energy
interval of 10–104 GeV for directions close to horizon�
tal. For directions close to vertical, there is agreement
for a narrower energy interval of Eν < 400 GeV.
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Table 2. Ratio of neutrino fluxes for the SIBYLL 2.1, QGS�
JET, and KM interaction models calculated for zenith anges
of 0° and 90°

Eν, 
Gev 1 2 3

Cosmic ray spectrum GH

102 1.65 (1.22) 0.97 (0.85) 1.65 (1.36)

103 1.71 (1.46) 0.96 (0.92) 1.73 (1.50)

104 1.60 (1.57) 0.96 (0.96) 1.58 (1.55)

105 1.54 (1.49) 0.99 (0.96) 1.46 (1.46)

Cosmic ray spectrum ATIC�2+3C

102 1.58 (1.26) 1.00 (0.91) 1.58 (1.38)

103 1.64 (1.39) 0.95 (0.92) 1.73 (1.51)

104 1.55 (1.46) 0.96 (0.95) 1.61 (1.54)

105 1.37 (1.23) 0.91 (0.83) 1.51 (1.48)

106 1.10 (0.95) 0.61 (0.55) 1.80 (1.73)

107 0.89 (0.75) 0.48 (0.43) 1.85 (1.74)
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Fig. 1. Zenith�angular distribtions of the total muon and
antineutrino fluxes calculated for two hadron–nuclei
interaction models.
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Figure 3 shows the comparison of fluxes calculated
for different zenith angles of atmospheric neutrinos
(νμ + ) (from μ, π, and K decays) with the prelimi�
nary results of the IceCube experiment. Curves (for
cosθ = 0–l.0, top to bottom) are calculation for the
primary spectrum and GH composition using the
QGSJET�II interaction model. Points with uncer�
tainties in the spectrum and neutrino energy represent
the IceCube data (Chirkin et al., 2009) averaged over
the an zenith angle (see also (Montaruli, 2009)).

Figure 4 compares the calculated neutrino spectra
with AMANDA�II data (Achterberg et al., 2007).
Results of calculating the spectra for both usual neutri�
nos (from μ, π, and K decays) and direct generation
neutrinos (from charmed particle decays) are shown.
A flux of atmospheric π and K neutrinos has been cal�
culated with the QGSJET�II model in combination
with the ZS primary spectrum (continuous “conv.”
lines). Dashed “conv.” lines are the results of calculat�
ing π and K neutrinos for zenith angles of 0° and 90°
from (Naumov et al., 1998). The thick dotted line
(curve 1) represents the sum of usual π and K neutrino
spectra obtained by us with the QGSJET�II + ZS
model for an zenith angle of 90°, and direct neutrino
generation from (Volkova and Zatsepin, 1999) (VZ);
the dash–dot curve 2 gives the sum of usual neutrinos
from the QGSJET�II model and direct generation
neutrinos calculated by the recombination quark–
parton model (Bugaev et al., 1989) (RQPM in Fig. 4).
The continuous line (4) shows the same, but for a
quark–gluon string model (QGSM) (Bugaev et al.,
1989) (see also (Bugaev et al., 1998; Naumov et al.,
1998; Naumov, 2002;)). Figure 2 presents direct gen�

νμ

2

eration neutrino spectra predictions in the quantum
chromodynamic model (QCD) from (Gelmini et al.,
2000) (GGV): curves 3 and 5, corresponding to gluon
distribution parameter values of λ = 0.5(0.1) at small
Bierkin x. The lower�lying curves 3, 4 and 5, show cor�
responding fluxes for θ= 0°.

Table 3 shows the calculated values of μ, π, and K
neutrino fluxes and neutrino fluxes from charmed par�
ticle decays at Eν = 100 TeV and restriction on diffuse
flux of astrophysical neutrinos, obtained in the
AMANDA�II experiment (Achterberg et al., 2007).
Note that the neutrino flux obtained by us with the
QGSJET�II interaction model and GH primary spec�
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Fig. 2. Two independent calculations for muon neutrino
fluxes for the primary spectrum and composition of the
GH model (Gaisser and Honda, 2002).
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Fig. 3. Atmospheric neutrino flux for different zenith
angles. Points are prelimary results of measuring the spec�
trum of muon neutrinos at the IceCube installation, aver�
aged over zenith angle (Chirkin et al., 2009.

Table 3. Atmospheric neutrino fluxes νμ at  = 100 TeV
and the upper limit in the Amanda�II experiment on diffu�
sion flux of atmospheric neutrinos

Model , (cm2 s sr)–1 GeV

μ�, π�, K�neutrinos: 0° 90°

QGSJET II+03 1.20 × 10–8 10.5 × 10–8

QGSJET II+GH 1.11 × 10–8 9.89 × 10–8

Direct neutrinos 90°

(νμ at ):

QGSM 1.22 × 10–8

RQPM 4.61 × 10–8

VZ 8.12 × 10–8

Limit AMANDA�II <7.4 × 10–8

νμ

Eν

2
φν

µ

νμ
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trum model is lowest of those presented here. Muon
neutrino fluxes at an energy of 100 TeV predicted by
the RQPM and QGSM do not contradict the restric�
tion on diffuse fluxess astrophysical neutrinos estab�
lished in the AMANDA�II experiment (Achterberg
et al., 2007).

CONCLUSIONS

Calculation of muon neutrino spectra in the
Earth’s atmosphere shows a weak dependence on the
model of the spectrum and composition of primary cos�
mic rays, at least in the energy interval of 10–105 GeV,
the region not including a break (“knee”) in the cos�
mic ray spectrum. However, application of different
high�energy hadron interaction models leads to a sig�
nifcant difference in muon neutrino fluxes calculated
within the limits of one computing scheme. With the
example of the QGSJET�II and SIBYLL 2.1 hadron
interaction models, it was clear that the main source of
more than a 50% difference in neutrino fluxes are kaon
generation processes in nucleon–nuclei collisions.

The widespread hope that calculations of atmo�
spheric hadron and muon fluxes, supported by exper�
imental measurements, can serve as a good tool for
choosing a reliable high�energy hadron–nuclei inter�
action model is most likely groundless, since the main
differences in the generation of the π and K compo�

nents influence the muon and neutrino flux character�
istics differently. The behavior of kaon�generation
cross sectionss in nucleon–nuclei interactions at high
energies is a more significant factor for high�energy
neutrino generation in comparison with muon flux
generation.

Fluxes of atmospheric neutrinos from charmed
particle decays (“direct” neutrinos) depend weakly on
the zenith angle (near 100 TeV), which gives grounds
to consider the upper limit on diffuse fluxes of astro�
physical neutrinos established in the AMANDA�II
experiment as a restriction on charmed particle gener�
ation models. Thus, it is possible to state that both
unperturbed models (RQPM and QGSM) do not
contradict the upper limit in the experiment
AMANDA�II on a diffuse neutrino flux.
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