ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ГОУ ВПО ИГУ) КАФЕДРА ОБЩЕЙ ФИЗИКИ

ИССЛЕДОВАНИЕ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ТВЕРДЫХ ДИЭЛЕКТРИКОВ ПРИ РАДИОЧАСТОТАХ

Методические рекомендации

Иркутск 2005 г

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Печатается по разрешению учебно-методического совета ГОУ ВПО Иркутского государственного университета

Рецензент: Доктор физ. – мат. наук, профессор кафедры электроники твердого тела М.С. Мецик

Составители: Л.А. Щербаченко доктор техн. наук, профессор кафедры общей физики ИГУ

В.А. Карнаков кандидат физ.- мат. наук, доцент кафедры теоретической физики ИГУ

С.Д. Марчук старший преподаватель кафедры радиоэлектроники ИГУ

Определение температурного коэффициента диэлектрической проницаемости твердых диэлектриков. – Иркутск: ИГУ, 2005 – с.13

Методические рекомендации предназначены для студентов физиков, специализирующихся в области физики твердого тела. Дано описание лабораторной работы по изучению зависимости к комплексной диэлектрической проницаемости от частоты. Описывается методика выполнения работы, резонансные методы определения диэлектрической проницаемости и тангенса угла диэлектрических потерь с помощью куметра.

Цель работы

1. Ознакомится с резонансным методом измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков в диапазоне радиочастот.

2. Получить навыки работы на куметре.

3. Снять частотную зависимость диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков (по указанию преподавателя).

4. Теоретически обосновать полученные результаты.

Комплексная диэлектрическая проницаемость.

Свойства диэлектрика на переменном токе удобно рассматривать пользуясь понятием комплексной диэлектрической проницаемости $\underline{e'_r} = e'_r - je''_r$, где e'_r и e''_r - действительная и мнимая части комплексной диэлектрической проницаемости.

Путем введения комплексной диэлектрической проницаемости реальный диэлектрик, обладающий удельной проводимостью g_a на частоте *w*, заменяется «идеальным» с проницаемостью $\underline{e_r}$. При этом уравнения электродинамики сохраняют свою форму, характерную для диэлектрика без потерь. Мнимая и действительная части комплексной диэлектрической проницаемости связаны между собой соотношением $e''_r = e'_r tgd$. Мнимую часть комплексной диэлектрической проницаемости комплексной диэлектрической

Виды поляризации.

Поляризация – это способность диэлектрика под действием электрического поля поляризоваться, т.е. изменять в пространстве расположение связанных заряженных частиц диэлектрика.

Существует несколько видов поляризации.

1. Электронная поляризация – это смещение электронных орбит относительно положительно заряженного ядра. Оно происходит во всех атомах любого вещества, т.е. во всех диэлектриках. Электронная поляризация устанавливается за время 10⁻¹⁵-10⁻¹⁴ с.

2. Ионная поляризация – смещение относительно друг друга разноименно заряженных ионов в веществах с ионными связями. Время ее установления 10⁻¹³ - 10⁻¹² с. Электронная и ионная поляризация относятся к числу мгновенных или деформационных видов поляризации.

3. Дипольная или ориентационная поляризация обусловлена ориентацией диполей в направлении электрического поля. Дипольной поляризацией обладают полярные диэлектрики. Время ее

установления 10⁻¹⁰ – 10⁻⁶ с. Дипольная поляризация относится к числу медленных или релаксационных видов поляризации.

4. Миграционная поляризация наблюдается в неоднородных диэлектриках, в которых электрические заряды накапливаются на границе радела неоднородностей. Процессы установления миграционной поляризации очень медленны и могут протекать на протяжении минут и даже часов.

5. Ионно – релаксационная поляризация обусловлена избыточным перебросом слабо связанных ионов под действием электрического поля на расстояния, превышающие постоянную решетки. Ионно – релаксационная поляризация проявляется в некоторых кристаллических веществах при наличии в них примесей в виде ионов или неплотной упаковке кристаллической решетки. Время ее установления 10⁻⁸ – 10⁻⁴ с.

6. Электронно-релаксационная поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или «дырок». Этот вид поляризации, как правило, обуславливает высокое значение диэлектрической проницаемости.

7. Спонтанная поляризация – самопроизвольная поляризация возникающая в некоторых веществах (например, сегнетовой соли) в определенной области температур.

8. Упруго-дипольная поляризация связана с упругим поворотом диполей на небольшие углы.

9. Остаточная поляризация – поляризация, которая остается в некоторых веществах (электретах) в течение продолжительного времени после снятия электрического поля.

10. Резонансная поляризация. Если частота электрического поля близка к собственной частоте колебаний диполей, то колебания молекул могут возрасти, что приведет к появлению резонансной поляризации в дипольном диэлектрике. Резонансная поляризация наблюдается при частотах лежащих в области инфракрасного света.

Реальный диэлектрик может одновременно обладать несколькими видами поляризации. Возникновение того или иного вида поляризации определяется физико-химическими свойствами вещества и диапазоном используемых частот.

Спектр диэлектрической проницаемости.

При рассмотрении изменения составляющих комплексной диэлектрической проницаемости (e'_r, e''_r) в зависимости от частоты наблюдается следующая картина (рис. 1). В гамма и рентгеновском

Рис.1. Зависимость e'_r и e''_r от частоты

диапазоне частот (выше 10^{17} Гц) e'_r равна единице, а e'_r - нулю; при понижении частоты начиная с ультрафиолетовой и видимой областей, появляется электронная поляризация, дающая вклад в e'_r на всех более низких частотах в твердых и жидких диэлектриках. В области дисперсии электронной поляризации ($10^{14} - 10^{16}$ Гц), когда частота внешнего поля совпадает с одной из частот собственных колебаний электронных оболочек (w_1), наблюдаются узкие максимумы разностных потерь, известные как оптические спектры поглощения. В инфракрасном диапазоне ($10^{21} - 10^{14}$ Гц) вслед за изменением поля начинают смещаться более тяжелые частицы – ионы. При этом появляется ионная поляризация, увеличивающая e'_r на более низких частотах на Δe_u . На частотах резонанса ионов (w_2, w_3) наблюдаются максимумы резонансного поглощения. В радиочастотном диапазоне ($10^{13} - 10^{11}$ Гц) у полярных диэлектриков появляется дипольная поляризация, к дальнейшему повышению $\Delta e'_r$ на Δe_g . В области релаксационной дисперсии, когда диполи не успевают

переориентироваться за полупериод изменения электрического поля, наблюдаются релаксационные потери. В неоднородных диэлектриках при низких частотах возникает миграционная поляризация, изменяющая e'_r на Δe_M , и связанные с ней потери, имеющие максимум на частоте релаксации миграционной поляризации (w_{pM}). Как видно из рис.1, наибольшее возможное значение e'_r диэлектрика есть e'_r , измеренное на постоянном напряжении (или на инфранизкой частоте) – это так называемая статическая диэлектрическая проницаемость e'_{rc} , а наименьшее значение e'_r , - измеренное на чрезвычайно высокой частоте, приближающейся к частоте световых колебаний – это оптическая диэлектрическая проницаемость $e_{r\infty}$. Разность $\Delta e_r = e_{rc} - e_{r\infty}$ называется инкрементом диэлектрической проницаемости.

Частотная зависимость действительной и мнимой части комплексной диэлектрической проницаемости и тангенса угла диэлектрических потерь при релаксационных процессах.

Используя формулу Дебая, описывающую частотную зависимость комплексной диэлектрической проницаемости, $\underline{e_r} = e_{r\infty} + \frac{e_{rc} - e_{r\infty}}{1 + jwr}$ можно получить выражение для действительной и мнимой составляющей e_r , а также для $tgd = e_r''/e_r'$

$$e'_{r} = e_{r\infty} + \frac{e_{rc} - e_{r\infty}}{1 + W^{2}r^{2}}$$
$$e''_{r} = \frac{(e_{rc} - e_{r\infty})Wr}{1 + W^{2}r^{2}}$$
$$tgd = \frac{(e_{rc} - e_{r\infty})Wr}{e_{rc} - e_{r\infty}W^{2}r^{2}}$$

Частотные зависимости e'_r, e''_r и tgd представлены на рис.2. С ростом частоты e'_r монотонно снижается от e_{rc} до $e_{r\infty}$, принимая при частоте релаксации w_p , значение $(e_{rc} - e_{r\infty})/2$. Мнимая составляющая комплексной диэлектрической проницаемости максимальна при частоте релаксации, где $e''_r = (e_{rc} - e_{r\infty})/2$. Величина tgd также проходит через максимум, лежащий при несколько большей частоте,

$$w_t = \frac{1}{r} \sqrt{\frac{e_{rc}}{e_{r\infty}}} = w_p \sqrt{\frac{e_{rc}}{e_{r\infty}}}$$
, где он достигает значения $tgd_{max} = \frac{e_{rc} - e_{r\infty}}{2\sqrt{e_{rc}e_{r\infty}}}$. При

наличии у диэлектрика двух времен релаксации r_1 и r_2 зависимость e'_r, e''_r и tgd от частоты принимает следующий вид (рис.3).

Рис.2. зависимость e_r , e_r и *lgc* от частоты для диэлектрика с одним временем релаксации

Рис.3. Зависимость e'_r , e''_r и tgd от частоты для диэлектрика с двумя временами релаксации

Как видно из рис.3 в частотном ходе tgd наблюдаются два

максимума. Первый максимум лежит при частоте $w_{p1} = \frac{1}{r_1} \sqrt{\frac{e_{rc}}{e_{mp}}}$, а

второй - $w_{pz} = \frac{1}{r_1} \sqrt{\frac{e_{mp}}{e_{r\infty}}}$, где e_{mp} - промежуточное значение

Рис.2. Зависимость *tgd* от частоты для диэлектрика с набором времен релаксации

Рис.3. Зависимость *tgd* обусловленная релаксационной поляризацией и сквозной проводимостью

диэлектрической проницаемости. Набор времен релаксации t, лежащих близко друг от друга дает низкий размытый максимум в частотном ходе tgd (рис.4). При учете потерь сквозной проводимости при их росте релаксационные потери играют все меньшую и меньшую роль. На рис.5 изображена частотная зависимость тангенса угла диэлектрических потерь, обусловленных релаксацией поляризации и сквозной проводимостью. Как видно (рис.5), по мере роста потерь

сквозной проводимости релаксационные потери играют все меньшую роль.

Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь методом вариации реактивной проводимости

Для определения диэлектрической проницаемости и тангенса угла диэлектрических потерь при высоких частотах широкое применение получили резонансные методы. Резонансные цепи с

Рис.6. Принципиальная схема метода вариации

сосредоточенными параметрами (содержащие катушки индуктивности, конденсаторы и резисторы) применяются в диапазоне частот от нескольких десятков килогерц до 200 МГц. Одним из

резонансных методов

нашедших широкое применение, является метод вариации реактивной проводимости. Изменение (вариация) реактивной проводимости

осуществляется изменением емкости колебательного контура. С генератором высокой частоты слабо связан измерительный контур (рис.б), параллельно которому может присоединяться исследуемый образец. Генератор работает в режиме неизменного тока, поэтому напряжение на параллельном колебательном контуре (рис.7,а) при изменении реактивной проводимости

реактивной проводимости

Рис.7. Резонансные кривые (а) и эквивалентные схемы контура без образца (б) и с образцом (в), поясняющие метод вариации реактивной проводимости

(емкости) контура переходит через максимум, а затем уменьшается. Наибольшее напряжение на контуре отвечает состоянию резонанса. Контур обладает потерями, поэтому эквивалентная схема, помимо L и С, содержит проводимость g_k , соответствующую потерям (рис.7,б). Если по оси абцисс откладывать емкость конденсатора С₀ и снимать зависимость U(C), т. е. резонансную кривую, один раз для контура без образца и второй – с образцом (конденсатор неизвестной емкости), то во втором случае (рис.7,а) максимум получается более тупым и сдвинутым влево, так как для получения резонанса на той же частоте колебаний приходится уменьшать емкость конденсатора на значение емкости образца. Снижение значения напряжения в максимуме обусловлено тем, что при подключении емкости С_x с потерями, общая активная проводимость увеличивается на g_x (рис.7,в). Первоначально настраивают контур без образца в резонанс, определив соответствующую емкость C_1 конденсатора (кривая 1, рис.7,а) и наибольшее напряжение контура U', изменяя емкость в ту или иную сторону от точки резонанса, следует найти значение ΔC_1 ,

соответствующее уменьшению напряжения до $\frac{U'}{\sqrt{2}}$. Это значение

выбрано с целью получения простого выражения для проводимости контура. Включив образец, вторично настраивают схему в резонанс и находят новое значение емкости C_2 (кривая 2, рис.7,а) и напряжения U''. В момент резонанса индуктивная проводимость контура равна его емкостной проводимости, поэтому полная проводимость содержит только активную составляющую. Напряжение на контуре без образца при первом резонансе (рис.7,а)

$$U' = \frac{I}{g_k},\tag{1}$$

где g_k - активная проводимость контура, *I* - ток в цепи. При расстройке контура напряжению $\frac{U'}{\sqrt{2}}$ будет отвечать новое значение емкости C'_1 :

$$\frac{U'}{\sqrt{2}} = \frac{1}{\sqrt{g_k^2 + \left(\frac{1}{wL_1} - wC_1'\right)^2}}$$
(2)

Из условия равенства реактивных проводимостей при резонансе ($wC_1 = \frac{1}{wL_1}$) находим $\sqrt{g_k^2 + (wC_1 + wC_1')^2} = \sqrt{g_k^2 + (w\Delta C_1)^2}$ (3) где $\Delta C_1 = |C_1 - C_1'|$. Разделив (1) на (2) с учетом (3) и возведя в

квадрат обе части равенства получим:

 $2 = \frac{g_k^2 + (w\Delta C_1)^2}{g_k^2}.$ Отсюда найдем активную проводимость контура $g_k = w\Delta C_1.$ (4)

Из (4) можно сделать вывод, что для определения активной проводимости g_k достаточно уменьшить (или увеличить) емкость колебательного контура относительно его значения при резонансе на величину ΔC_1 , соответствующую снижению напряжения при резонансе U'_1 до 0,707 $U'(\frac{U'}{\sqrt{2}})$. Отрезок $2\Delta C_1$ получил название ширины резонансной кривой. По ширине резонансной кривой можно определить добротность контура Q_1 . При резонансе в контуре без образца, согласно теории переменных токов

$$\frac{1}{Q_1} = \frac{wL}{R_k} = \frac{g_k}{wC_1}.$$
(5)

Так как $g_k = w\Delta C_1$, то $\frac{1}{Q} = \frac{\Delta C_1}{C_1}$.

Параметры неизвестного конденсатора (C_x, tgd) удобно выразить через добротность контура. Не присоединяя C_x , настраивают контур в резонанс, измеряют добротность контура Q_1 и отсчитывают емкость C_1 . По формуле (5) находят проводимость контура g_k .

$$g_k = \frac{WC_1}{Q_1} \,. \tag{6}$$

Добротность Q_1 можно определить по ширине резонансной кривой. Подключив C_x и изменяя емкость переменного конденсатора, добиваются резонанса при другом значении емкости C_2 переменного конденсатора; измеряют новое значение добротности контура Q_2 . Так как частота не меняется, то емкость при второй настройке в резонанс $C_2 + C_x$ должна равняться емкости C_1 , т.е. $C_x = C_1 - C_2$. Общая активная проводимость $g_k + g_x = \frac{w(C_2 + C_x)}{Q_2} = \frac{wC_1}{Q_1}$. Используя (6) для проводимости g_k получим $g_x = wC_1 \left(\frac{1}{Q_2} - \frac{1}{Q_1}\right)$. Тогда тангенс угла

диэлектрических потерь:

$$tgd = \frac{g_x}{wC_x} = \frac{C_1}{C_x \left(\frac{1}{Q_2} - \frac{1}{Q_1}\right)}.$$

Измеритель добротности – куметр.

Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь осуществляется с помощью куметра (рис.8). С генератором высокой частоты Г индуктивно связан контур, который состоит из катушки связи К, сменной катушки индуктивности L, R_x (каждая катушка рассчитана на определенный диапазон частот) и воздушного конденсатора переменной емкости C_0 . Параллельно конденсатору C_0 включен вольтметр, шкала которого проградуирована в единицах добротности Q. К зажимам C_x параллельно C_0 присоединяется исследуемый образец. Конденсатор C_0 имеет минимальные потери, поэтому сопротивление контура без исследуемого образца равняется сопротивлению R_k .

Рис.8. Принципиальная схема куметра

Катушка связи К нагружена на безреактивное сопротивление R_0 , величина которого значительно меньше сопротивления контура R_k , поэтому можно считать, что весь ток практически идет через сопротивление R_0 . Входное напряжение U_0 , которое равно напряжению на сопротивлении, поддерживается постоянным (индикатором является милливольтметр или миллиамперметр). Выходное напряжение контролируется вольтметром с очень высоким входным сопротивлением, включенным параллельно конденсатору. Показания вольтметра при резонансе пропорциональны добротности контура. Напряжение на конденсаторе $U_c = \frac{I}{wC_0}$. При резонансе ток в контуре $I = \frac{U_0}{R_k}$ (без исследуемого образца). Причем при резонансе $\frac{1}{wC_0} = wL$, поэтому $U_c = \frac{wLU_0}{R_k} = U_0Q$. Так как входное напряжение U_c поддерживается постоянным, то шкалу вольтметра V можно проградуировать в единицах добротности $Q = \frac{U_c}{U_0}$.

Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь с помощью куметра.

1. Определение *e*'_r и *tgd* при постоянном расстоянии между электродами измерительной ячейки.

При заданной частоте измерением емкости измерительного конденсатора настраивают измерительный контур без измерительной ячейки в резонанс с частотой генератора и фиксируют значение *C*₁ (наличие резонанса указывает максимальное отклонение стрелки куметра).

При той же частоте настраивают измерительный контур в резонанс с подключенной к зажимам C_x куметра измерительной ячейкой, между электродами которой зажат исследуемый образец толщиной *h* и диаметром D ($D \le D_0$), где D_0 - диаметр электродов измерительной ячейки, и фиксируют значения C_2 и Q_2 . Для параллельного контура с образцом

$$Q_2 = \frac{wC_1}{\left(g_k + g_0\right)},$$
(7)

где g_k , g_0 - активные проводимости контура без образца и с образцом.

$$C_{1} = C_{2} + \frac{e'_{r}D^{2}}{14,4h} + \frac{D_{0}^{2} - D^{2}}{14,4h} + C_{m} + C_{h} + C_{k} + C_{k_{2}},$$
(8)

где C_m - монтажная емкость измерительной ячейки; C_n - емкость высокопотенциального электрода на землю; C_k - краевая емкость образца; C_{k_3} - краевая емкость электродов.

При той же частоте настраивают измерительный контур в резонанс с подключенной к зажимам C_x куметра измерительной ячейки без образца, при расстоянии между электродами равным толщине образца, и фиксируют значения C_3 и Q_3 . Для параллельного контура с образцом

$$Q_{3} = \frac{wC_{1}}{g_{k}}.$$
(9)
 $C_{1} = C_{3} + \frac{D_{0}^{2}}{14,4h} + C_{m} + C_{n} + C_{k_{3}}$
(10)
Из выражений (8) и (10) находим
 $e'_{r} = 1 + \frac{14,4h(C_{3} - C_{2} - C_{k})}{D^{2}}$
(11)

Из выражений (7) и (9) с учетом того, что $tgd = \frac{g_x}{wC_x}$, найдем

$$tgd = \frac{C_1}{C_3 - C_2 - C_x} \left(\frac{1}{Q_2} - \frac{1}{Q_3}\right)$$
(12)

Без учета краевой емкости выражения (11) и (12) принимают вид

$$e'_{r} = 1 + \frac{14,4h(C_{3} - C_{2})}{D^{2}}$$
$$tgd = \frac{C_{1}}{C_{3} - C_{2}} \left(\frac{1}{Q_{2}} - \frac{1}{Q_{3}}\right)$$

Расчет емкости производится по формуле

 $C_x = pD(0,029 - 0,058 \lg h)$

2. Определение e'_r и tgd при изменении расстояния между электродами измерительной ячейки.

При заданной частоте изменением емкости измерительного конденсатора настраивают измерительный контур в резонанс с подключенной к зажимам C_x куметра измерительной ячейкой, между электродами которой зажат исследуемый образец толщиной h, и фиксируют значение Q_1 . Увеличивая или уменьшая емкость измерительного конденсатора до значения C_1 добиваются растройки контура, при которой показания прибора падают до значения 0,707 Q_1 . Находят значения емкости $\Delta C_1 = |C - C_1|$. Затем возвращают измерительный конденсатор в исходное состояние.

При той же частоте настраивают измерительный контур в резонанс, уменьшая расстояние между электродами измерительной ячейки, из которой вынут исследуемый образец, и фиксируют значения h_2 и Q_2 . Увеличивая или уменьшая емкость измерительного конденсатора до значения C_2 добиваются растройки контура при которой показания прибора падают до значения $\frac{C_2}{\sqrt{2}}$. Находят изменение емкости $\Delta C_2 = |C - C_2|$.

При первой настройке измерительного контура в резонанс

$$C = C_0 + \frac{e'_r D^2}{14,4h_1} + \frac{D_0^2 - D^2}{14,4h_1} + C_m + C_n + C_k + C_{k3}$$
(14)

где С - начальная емкость контура.

При второй настройке измерительного контура в резонанс

$$C = C_0 + \frac{D_0^2}{14,4h_2} + C_m + C_n + C_{k_2}$$
(15)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Тогда

$$e'_{r} = 1 + \frac{D_{0}^{2}}{D^{2}} \left(\frac{h_{1}}{h_{2}} - 1 - \frac{14.4h_{1}C_{k}}{D^{2}} \right)$$
(16)

$$tgd = \frac{14.4h_{2}(\Delta C_{1} - \Delta C_{1})}{D^{2}}$$
(17)

Без учета краевой емкости

$$e'_r = 1 + \frac{D_0^2}{D^2} \left(\frac{h_1}{h_2} - 1 \right)$$

Порядок выполнения работы

1. Ознакомится с описанием лабораторной работы.

2. Получить допуск у преподавателя на право выполнения работы.

3. Подготовить куметр к работе (последовательность проведения операций указана на стенде установки).

4. Определить *e*'_r и *tgd* при постоянном расстоянии между электродами измерительной ячейки (частоты задаются преподавателем).

5. Провести измерения необходимых величин.

6. Используя выражение (13) определить краевую емкость образца.

7. Вычислить, используя (11) и (12), e'_r и tgd.

8. Полученные данные занести в таблицу 1.

Таблица1

Определение e'_r и tgd при постоянном расстоянии между электродами измерительной ячейки

<i>f</i> ,	C_1 ,	$C_{2},$	Q_2	<i>C</i> ₃ ,	Q_3	C_k ,	<i>e</i> ' _{<i>r</i>}	tgd
Гц	πФ	πФ		πΦ		πФ		

9. Построить графики зависимости $e'_r = e'_r(f)$ и tgd = tgd(f).

10.Объяснит полученные результаты.

11.Определить e'_r и tgd при изменении расстояния между электродами измерительной ячейки.

12. Провести измерения необходимых величин.

13.Используя выражение (13), определить краевую емкость.

14.Вычислить, используя (16) и (17), e'_r и tgd.

15.Полученные результаты занести в таблицу 2.

Таблица 2

Определение *e*'_r и *tgd* при изменении расстояния между электродами измерительной ячейки.

<i>f</i> ,	h_1 ,	h_2 ,	С,	C_1 ,	$C_{2},$	ΔC_1 ,	ΔC_2 ,	C_k ,	<i>e</i> ' _{<i>r</i>}	
Γц	СМ	СМ	пΦ	пΦ	πФ	πФ	πФ	πФ		

16.Построит график зависимости $e'_r = e'_r(f)$ и tgd = tgd(f).

17.Объяснить полученные результаты.

Контрольные вопросы и задания.

1. Какие виды поляризации вы знаете?

2. Как изменяется диэлектрическая проницаемость с частотой?

3. Нарисовать и объяснить частотные зависимости e'_r , e''_r и tgd для диэлектрика с одним временем релаксации.

4. Нарисовать и объяснить частотные зависимости e'_r , e''_r и tgd для диэлектрика с двумя временами релаксации.

5. Нарисовать и объяснить принципиальную схему куметра.

6. Чем объясняется выбор сменной катушки индуктивности?

7. Почему входное напряжение должно быть постоянно при определении e'_r и tgd с помощью куметра?

8. Почему вольтметр можно проградуировать в единицах добротности?

9. Какие геометрические параметры необходимы для расчета e'_r ?

10.В чем принципиальное отличие двух описанных методов определения диэлектрической проницаемости с помощью куметра?